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Abstract. Pluripotential Theory is the study of the ”fine prop-
erties” of plurisubharmonic functions on domains in Cn as well as
on complex manifolds. These functions appear naturally in Com-
plex Analysis of Several Variables in connection with holomorphic
functions. Indeed they appear as weights of metrics in the L2-
estimates of Hörmander for the solution to the Cauchy-Riemann
equation on pseudoconvex domains culminating with the solution
of the Levi problem (see [Hor90]).

They appear also in Kähler geometry as potentials for (sin-
gular) Kähler metrics on compact Kähler manifolds and as local
weights for singular hermitian metrics on holomorphic line bundles.
Here local plurisubharmonicity corresponds to (semi)-positivity of
the curvature form of the corresponding singular metric.

Recently Pluripotential theory has found many interesting ap-
plications in Complex Algebraic Geometry ([Dem13]) as well as
in Kähler geometry (e.g. the Calabi conjecture on Kähler sin-
gular varieties, the existence of singular Kähler-Einstein metrics,
etc...). All these problems boil down to solving degenerate complex
Monge-Ampère equations ([GZ17]).

The main goal of this course is to give an elementary intro-
duction to this theory as developed by E. Bedford and B.A. Taylor
in the late seventies and early eighties ([BT76], [BT76]). From
their definition it follows that plurisubharmonic functions are sub-
harmonic with respect to infinitely many Kähler metrics. There-
fore the positive cone of plurisubharmonic functions can be viewed
as an infinite intersection of ”half spaces”, hence it is of nonlinear
nature. It turns out that the study of plurisubharmonic functions
involves a fully nonlinear second order partial differential operator,
called the complex Monge-Ampère operator, a nonlinear general-
ization of the Laplace operator from one complex variable.

We will first recall some elementary facts from logarithmic po-
tential theory in the complex plane focusing on the Dirichlet prob-
lem for the Laplace operator. Then we will introduce the com-
plex Monge-Ampère operator acting on bounded plurisubharmonic
functions on domains in Cn and study its continuity properties.
Finally we will we apply these results to solve the Dirichlet Prob-
lem for degenerate complex Monge-Ampre equations in strictly
pseudo-convex domains in Cn using the Peron method which was
introduced by Bremmermann in this context ([Bre59]).

The material of this course is taken essentially from [GZ17]
(see also [Klim91]).
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CHAPTER 1

Logarithmic Potential Theory

1. Introduction

The potential theory comes from mathematical physics, in partic-
ular, from electrostatic and gravitational problems and find applica-
tions in the probability theory, scattering theory, biological systems
and many other branches of science. During the last century the clas-
sical potential theory and the non-linear potential theory has occupied
an important place in mathematics. The term potential theory arises
from the fact that, in 19th century physics, the fundamental forces
of nature were believed to be derived from potentials which satisfied
Laplace’s equation in R3. Hence, potential theory was the study of
functions that could serve as potentials.

It turns out that these functions are subharmonic in the whole space
R3 and concersly any subharmonic is (up to an harmonic function)
equal to the Newton potential of its Riesz measure in any subdomain
D ⋐ R3. Therefore in Mathematics, Classical Potential Theory aims
in studing the ”fine properties” of subharmonic functions in domains
of the euclidean space Rn, using potentials associated to distributions
of masses or charges.

Logarithmic Potential Theory is the study of harmonic and subhar-
monic functions in domains in C ≃ R2. In this case there is a deep
interplay with the theoryof holomorphic functions of one complex vari-
able. Logarithmic Potential Theory turns out to have many important
applications in Complex Analysis, Approximation Theory ([ST97]),
Complex Dynamics and Functional Analysis ([Ra95].

2. Harmonic functions

2.1. Definitions and basic properties. Let Ω ⊂ R2 ≃ C be a
domain. Recall that a function h : Ω → R is harmonic if h is C2-smooth
and satisfies the Laplace equation

∆h = 0

in Ω, where

∆ =
∂2

∂x2
+

∂2

∂y2
= 4

∂2

∂z∂z̄
,

is the Laplace operator in C = R2.
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6 1. LOGARITHMIC POTENTIAL THEORY

It follows from the Cauchy-Riemann equations that if f : Ω −→ C
is a holomorphic function then its real part h = ℜef is harmonic. The
Cauchy formula shows that f has the mean-value property: for any
closed disc D̄(a, r) ⊂ Ω,

(2.1) f(a) =

∫ 2π

0

f(a+ reiθ)
dθ

2π
.

Conversely any harmonic function is locally the real part of a holo-
morphic function, hence harmonic functions satisfy the mean-value
property. The latter actually characterizes harmonic functions:

Proposition 1.1. Let h : Ω −→ R be a continuous function in Ω.
The following properties are equivalent:

(i) the function h is harmonic in Ω;
(ii) for any a ∈ Ω and any disc D(a, r) ⊂ Ω there is a holomorphic

function f in the disc D(a, r) such that h ≡ ℜef in D(a, r);
(iii) the function h satisfies the mean-value property (2.1) at each

point a ∈ Ω and for any r > 0 such that D̄(a, r) ⊂ Ω;
(iv) the function h satisfies the mean-value property (2.1) at each

point a ∈ Ω, for r > 0 small enough.

In particular harmonic functions are real analytic hence C∞-smooth.

Proof. We first show the implication (i) =⇒ (ii). We need to
prove that for a fixed disc D = D(a, r) ⋐ Ω there exists a smooth
function g in D such that h+ ig is holomorphic in D. This boils down
to solving the equation

dg = −∂h
∂y
dx+

∂h

∂x
dy =: α

in D. The 1-form α is closed in Ω since h is harmonic,

dα = ∆h dx ∧ dy ≡ 0.

The existence of g therefore follows from Poincaré lemma.
The implication (ii) =⇒ (iii) follows from the Cauchy formula as we

have already observed, while the implication (iii) =⇒ (iv) is obvious.
It remains to show (iv) =⇒ (i). We first prove that h is actually

smooth in Ω. Let ρ : C −→ R+ be a radial function with compact
support in the unit disc D such that

∫
C ρ(z) dλ(z) = 2π

∫ 1

0
ρ(r)rdr = 1.

We consider, for ε > 0,

ρε(z) := ε−2ρ(z/ε) so that

∫
C
ρε(z)dλ(z) = 1.

Set hε := h⋆ρε for ε > 0 small enough. These functions are smooth
and we claim that hε = h in Ωε = {z ∈ Ω | dist(z, ∂Ω) > ε} for ε > 0
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small enough. Indeed integrating in polar coordinates and using the
mean value property for h we get

hε(a) =

∫ 1

0

rρ(r)dr

∫ 2π

0

h(a+ εreiθ)dθ = 2πh(a)

∫ 1

0

rρ(r)dr = h(a).

Therefore h = hε is smooth in Ωε.
Fix now a ∈ Ω and use Taylor expansion of h in a neighborhood of

a: for |z − a| = r << 1

h(z) = h(a) + ℜP (z − a) +
r2

2
∆h(a) + o(r2),

where P is a quadratic polynomial in z such that P (0) = 0. Thus

1

2π

∫ 2π

0

h(a+ reiθ)dθ = h(a) +
r2

2
∆h(a) + o(r2),

hence

∆h(a) = lim
r→0+

2

r2

(∫ 2π

0

h(a+ reiθ)
dθ

2π
− h(a)

)
= 0,

by the mean value property. Thus h is harmonic in Ω. □

Let D(Ω) denote the space of complex valued smooth functions with
compact support in Ω and let D′(Ω) denote the space of distributions
(continuous linear forms on D(Ω)).

Recall that a function f ∈ L1
loc(Ω) defines a distribution Tf ∈ D′(Ω),

T (f) : D(Ω) ∋ χ 7→
∫
Ω

χfdλ2 ∈ C,

where dλ2 denotes the Lebesgue measure on C ≃ R2.
This defines a distribution on Ω i.e. a continuous linear operator

on the space D(Ω) for the topology of local uniform convergence up
to any order with uniform control on the supports. Observe that the

mapping
T : L1

loc(Ω) ∋ f 7−→ T (f) ∈ D′(Ω)

is injective, so that we can identify f with T (f) and consider f as a
distribution acting on test functions by integration.

Actually this is a Radon measure on Ω i.e. a continuous linear op-
erator on the space K(Ω) of continuous test functions for the topology
of local uniform convergence with uniform control on the supports.

Weyl’s lemma shows that harmonic distributions are harmonic mean-
ing that they are induced by harmonic functions:

Lemma 1.2. ( Weyl’s lemma). Let T ∈ D′(Ω) be a harmonic dis-
tribution on Ω. Then there is a unique harmonic function h in Ω such
that T = T (h) in D′(Ω).

This is a particular cas of a general property, called the (hypo)ellipticity
of the Laplace operator.
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Proof. Consider radial mollifiers (ρε)ε>0 as above and set Tε :=
T ⋆ ρε. Then Tε is a smooth function in Ωε which satisfies ∆Tε =
(∆T ) ⋆ ρε = 0 in Ωε, hence it is a harmonic function in Ωε.

The proof of the previous proposition shows that for ε, η > 0,

Tε = Tε ⋆ ρη = Tη ⋆ ρε = Tη

weakly in Ωε+η. Letting ε → 0 we obtain T = Tη in the weak sense of
distributions in Ωη. Therefore as η → 0+ the functions Tη glue into a
unique harmonic function h in Ω such that T = Th in Ω. □

2.2. Poisson formula and Harnack inequalities. The Poisson
formula is a reproducing formula for harmonic functions:

Proposition 1.3. (Poisson formula). Let h : D̄ −→ R be a con-
tinuous function which is harmonic in D. Then for all z ∈ D

h(z) =
1

2π

∫ 2π

0

h(eiθ)
1− |z|2

|eiθ − z|2
dθ.

Proof. We reduce to the case when h is harmonic in a neighbor-
hood of D̄ by considering z 7−→ h(rz) for 0 < r < 1 and letting r
increase to 1 in the end.

For z = 0 the formula above is the mean value property in the unit
disc. Fix a ∈ D and let fa be the automorphism of D sending 0 to a,

fa(z) :=
z + a

1 + āz
.

The function h ◦ fa is harmonic in a neighborhood of D̄, hence

h(a) = h ◦ fa(0) =
∫
∂D
h ◦ fa(z)dσ

The change of variables ζ = fa(z) yields z = f−a(ζ) and

h(a) =
1

2π

∫ 2π

0

h(eiθ)
1− |a|2

|1− āeiθ|2
dθ,

as desired. □

The following are called Harnack’s inequalities:

Corollary 1.4. Let h : D̄ −→ R+ be a non-negative continuous
function which is harmonic in D. For all 0 < ρ < 1 and z ∈ D with
|z| = ρ, we have

1− ρ

1 + ρ
h(0) ≤ h(z) ≤ 1 + ρ

1− ρ
h(0).

Proof. Fix z ∈ D such that |z| = ρ and observe that

1− ρ

1 + ρ
≤ 1− |z|2

|eiθ − z|2
≤ 1 + ρ

1− ρ
.
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Since h ≥ 0 in ∂D we can multiply these inequalities by h(eiθ) and
integrate over the unit circle. Poisson formula and the mean value
property for h thus yield

1− ρ

1 + ρ
h(0) ≤ h(z) ≤ 1 + ρ

1− ρ
h(0).

□

2.3. The maximum Principle. Harmonic functions satisfy the
following fundamental maximum principle:

Theorem 1.5. Let h : Ω → R be a harmonic function.
1. If h admits a local maximum at some point a ∈ Ω then h is

constant in a neighborhood of a.
2. For any bounded subdomain D ⋐ Ω we have

max
D̄

h = max
∂D

h.

Moreover h(z) < max∂D h for all z ∈ D unless h is constant.

Proof. 1. Assume there is a disc D(a, r) ⊂ Ω s.t. h(z) ≤ h(a) for
all z ∈ D(a, r). Fix 0 < s < r and note that h(a)− h(a+ seiθ) ≥ 0 for
all θ ∈ [0, 2π]. The mean value property yields∫ 2π

0

(
h(a)− h(a+ seiθ)

)
dθ = 0.

Since h is continuous we infer h(a)− h(a+ seiθ) = 0 for all θ ∈ [0, 2π],
hence h is constant as claimed.

2. By compactness there exists a ∈ D̄ such that h(a) = maxD̄ h. If
a ∈ D the previous case shows that h is constant in a neighborhood of
a. Therefore the set A := {z ∈ D;h(z) = h(a) = maxD̄ h} is open, non
empty and closed (by continuity). We infer A = D hence h is constant
in D. □

2.4. The Dirichlet problem in the disc. Let Ω ⊂⊂ C be a
bounded domain and ϕ : ∂Ω → R a continuous function (the boundary
data). The Dirichlet problem for the homogeneous Laplace equation
consists in finding a harmonic function h : Ω → R solution of the
following linear PDE with prescribed boundary values,

DP(Ω, ϕ,0)

{
∆h = 0 in Ω
h|∂Ω = ϕ

By the maximum principle, if a solution exists it is unique. We only
treat here the case when Ω is the unit disc

D := {ζ ∈ C ; |ζ| < 1}.

The solution can be expressed by using the Poisson transform:
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Proposition 1.6. Assume ϕ ∈ C0(∂D). The function

z 7→ hϕ(z) :=
1

2π

∫ 2π

0

1− |z|2

|z − eiθ|2
ϕ(eiθ)dθ

is harmonic in D and continuous up to the boundary where it coincides
with ϕ. Thus hϕ is the unique solution to DP(Ω, ϕ,0).

Proof. Observe that for fixed ζ = eiθ ∈ ∂D, the Poisson kernel is
the real part of a holomorphic function in D,

PD(ζ, z) :=
1

2π

1− |z|2

|z − ζ|2
=

1

2π
ℜ
(
ζ + z

z − ζ

)
.

Thus hϕ is harmonic in D as an average of harmonic functions.
We now establish the continuity property. Fix ζ0 = eiθ0 ∈ ∂D

and ε > 0. Since ϕ is continuous at ζ0, we can find δ > 0 such that
|ϕ(ζ)−ϕ(ζ0)| < ε/2 whenever ζ ∈ ∂D and |ζ− ζ0| < δ. Observing that
the Poisson formula for h ≡ 1 implies

1

2π

∫ 2π

0

1− |z|2

|z − eiθ|2
dθ ≡ 1,

we infer

|hϕ(z)− ϕ(ζ0)| ≤ ε/2 +M

∫
|eiθ−ζ0|≥δ

1− |z|2

|z − eiθ|2
dθ,

where 2πM = sup∂D |ϕ|. Note that |z − eiθ| ≥ δ/2 if z is close enough
to ζ0 and |eiθ − ζ0| ≥ δ. The latter integral is therefore bounded from
above by 4(1 − |z|2)/δ2 hence converges to zero as z approaches the
unit circle. □

3. Subharmonic functions

We now recall some basic facts concerning subharmonic functions
in R2 ≃ C. These are characterized by submean-value inequalities.

3.1. Definitions and basic properties. Let Ω ⊂ C be a domain.

Definition 1.7. A function u : Ω −→ [−∞,+∞[ is subharmonic
if it is upper semi-continuous in Ω and for all a ∈ Ω there exists 0 <
ρ(a) < dist(a, ∂Ω) such that for all 0 < r < ρ(a),

(3.1) u(a) ≤ 1

2π

∫ 2π

0

u(a+ reiθ)dθ.

Recall that a function u is upper semi-continuous (u.s.c. for short)
in Ω if and only if for all c ∈ R the sublevel set {u < c} in an open
subset of Ω. Note that harmonic functions are subharmonic; the class
of subharmonic functions is however much larger.

The notion of subharmonicity is a local concept. By semi-continuity,
a subharmonic function is bounded from above on any compact sub-
set K ⊂ Ω and attains its maximum on K. It can however take the
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value −∞ at some points. With our definition the function which is
identically −∞ is subharmonic in Ω.

We will soon show that if u is subharmonic in a domain Ω and
u ̸≡ −∞, then u ∈ L1

loc(Ω) hence the set {u = −∞} has zero Lebesgue
measure in C. It is called the polar set of u.

Observe that the maximum of two subharmonic functions is sub-
harmonic; so is a convex combination of subharmonic functions. Here
are some further recipes to construct subharmonic functions:

Proposition 1.8. Let Ω ⊂ C be a domain in C.
(1) If u : Ω −→ [−∞,+∞[ is subharmonic in Ω and χ : I → R is

a convex increasing function on an interval I containing u(Ω)
then χ ◦ u is subharmonic in Ω.

(2) Let (uj)j∈N be a decreasing sequence of subharmonic functions
in Ω. Then u := lim uj is subharmonic in Ω.

(3) Let (uj)j∈N be a sequence of subharmonic functions in Ω, which
is locally bounded from above in Ω and (εj) ∈ RN

+ be such that∑
j∈N εj < +∞. Then u :=

∑
j∈N εjuj is subharmonic in Ω.

(4) Let (X, T ) be a measurable space, µ a positive measure on
(X, T ), and E(z, x) : Ω×X −→ R ∪ {−∞} a function s.t.

(i) for µ-a.e. x ∈ X, z 7−→ E(z, x) is subharmonic in Ω,
(ii) For all z0 ∈ Ω, ∃D a neighborhood of z0 in Ω and

g ∈ L1(µ) s.t. E(z, x) ≤ g(x) for all z ∈ D and µ-a.e. x ∈ X.
Then z 7→ U(z) :=

∫
X
E(z, x)dµ(x) is subharmonic in Ω.

Proof. 1. The first property is an immediate consequence of
Jensen’s convexity inequality.

2. It is clear that u = inf{uj; j ∈ N} is usc in Ω. The submean-value
inequality is a conseqence of the monotone convergence theorem.

3. The statement is local hence it is enough to prove that u is
subharmonic in any subdomain D ⋐ Ω. By assumption there exists
C > 0 such that supD uj ≤ C for all j ∈ N. Write

u =
∑
j∈N

εj(uj − C) + C
∑
j∈N

εj.

The first sum is the limit of a decreasing sequence of subharmonic
functions, hence it is subharmonic and so is u.

4. The upper semi-continuity of U is a consequence of Fatou’s
lemma. The submean value property is a consequence of the Tonelli-
Fubini theorem. □

We now give some examples of subharmonic functions.

Examples 1.9.
1. Fix a ∈ C and c > 0. The function z 7→ c log |z − a| is subhar-

monic in C and harmonic in C \ {a}.
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2. Let (aj) ∈ CN be a bounded sequence and let εj > 0 be positive
reals such that

∑
j εj < +∞. The function

z 7→ u(z) :=
∑
j

εj log |z − aj|

is a locally integrable subharmonic function in C. If the sequence (aj)
is dense in a domain Ω, it follows from a Baire category argument that
the polar set (u = −∞) is uncountable but has zero Lebesgue measure.
Any point z ∈ Ω \ {u = −∞} is a point of discontinuity of u: the
function u is finite at z but not locally bounded near z.

We generalize the first example above:

Proposition 1.10. Let f : Ω −→ C be a holomorphic function
with f ̸≡ 0 in Ω. Then log |f | is a subharmonic function in Ω which
is harmonic in the domain Ω \ f−1(0). In particular for any α > 0 the
function |f |α is a subharmonic function in Ω.

Proof. Observe that {u = −∞} = {f = 0}. It is clear that u is
u.s.c. in Ω, since for every c ∈ R {u < c} = {|f | < ec} is open.

If a ∈ Ω and u(a) = −∞, the submean-value inequality (3.1) is
trivially satisfied. If a ∈ Ω and u(a) > −∞ then f(a) ̸= 0. By
continuity, f(z) ̸= 0 for |z − a| < r, where r > 0 is small enough. It
follows that log f has a continuous branch which is holomorphic in the
disc D(a, r). Therefore u = ℜ(log f) is harmonic in D(a, r) hence it
satisfies the submean-value equality.

The last statement follows from the fact that |f |α = χ(log |f |) where
χ(t) := exp(αt) is a convex increasing function in R ∪ {−∞}. □

There are other connections between convexity and subharmonicity.

Proposition 1.11. Let u : Ω −→ R be a locally convex function.
Then u is a continuous subharmonic function in Ω.

2. Let u : Ω = D×G ⊂ R2 −→ R be a function which only depends
on the real part of z i.e. u(z) = v(x) for any z = x+ iy ∈ Ω, then u is
subharmonic in Ω iff v is convex in D,

3. Let u be a radial subharmonic function definid on a disc D(0, R)
i.e. u(z) := ψ(|z|). Then u is subharmonic in D(0, R) if and only if
the function ψ is a convex function of log |z| in [−∞, logR[.

We leave the proofs for the reader as an exercise (see Exercise 1.7).

Remark 1.12. Observe that convex functions are continuous but
this is not the case for subharmonic functions as Examples 1.9 show.
This is an important source of difficulty when studying fine properties
of subharmonic functions.

The converse of the above proposition is not true: the function
u(x, y) = x2 − y2 is harmonic but not convex.
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The mean value of a subharmonic function has an important mono-
tonicity property:

Proposition 1.13. Let u be a subharmonic function, a ∈ Ω and
set δ(a) := dist(a, ∂Ω). The mean-value

r 7−→M(a, r) :=
1

2π

∫ 2π

0

u(a+ reiθ)dθ,

is increasing and continuous in [0, δ(a)[ ; it converges to u(a) as r → 0.

Proof. Fix 0 < r < δ(a) and let h be a continuous function in the
unit circle ∂D such that u(a + reiθ) ≤ h(eiθ) for all eiθ ∈ ∂D. Let H
be the unique harmonic function in D such that H = h on ∂D. The
classical maximum principle insures u(a+ rζ) ≤ H(ζ) for ζ ∈ D.

If 0 < s < r, it follows from the mean-value property for harmonic
functions that∫ 2π

0

u(a+ seiθ)dθ ≤
∫ 2π

0

H(seiθ)dθ =

∫ 2π

0

H(reiθ)dθ.

Therefore
∫ 2π

0
u(a+seiθ)dθ ≤

∫ 2π

0
h(reiθ)dθ for any continuous function

h such that u(a+ rζ) ≤ h(ζ) on ∂D.
Since u is upper semi-continuous, there exists a decreasing sequence

hj of continuous functions in the circle ∂D that converges to the func-
tion ζ 7−→ u(a + rζ) in the circle (see Exercise 1.1). The monotone
convergence theorem yields∫ 2π

0

u(a+ seiθ)dθ ≤
∫ 2π

0

u(a+ reiθ)dθ.

□
Corollary 1.14. If u is subharmonic in Ω, a ∈ Ω and 0 < r <

δ(a), then

u(a) ≤ 1

πr2

∫
D(a,r)

u(z)dλ2(z),

where λ2 is the Lebesgue measure on R2. For any a ∈ Ω,

u(a) = lim
r→0+

1

πr2

∫
D(a,r)

u(z)dλ2(z).

In particular if u and v are subharmonic functions in Ω such that
u ≤ v almost everywhere in Ω then u ≤ v everywhere in Ω.

This will impy integrability of subharmonic functions.
The submean-value inequalities imply the following important in-

tegrability result:

Proposition 1.15.

SH(Ω) ⊂ L1
loc(Ω).
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Moreover the restriction of u ∈ SH(Ω) to any circle ∂D(a, r) such
that D̄(a, r) ⊂ Ω is integrable with respect to the lenght measure of the
circle.

In particular the polar set P (u) := {u = −∞} has zero arear in Ω
and its intersection with any circle has lenght zero.

Definition 1.16. A set is called (locally) polar if it is (locally)
included in the polar set {u = −∞} of a function u ∈ SH(Ω).

It follows from previous proposition that ipolar sets are somehow
small. We will provide more precise information on their size in the
next chapters.

Proof. Fix u ∈ SH(Ω) et let G denote the set of points a ∈ Ω
such that u is integrable in a neighborhood of a. We are going to show
that G is a non empty open and closed subset of Ω. It will follow that
G = Ω (by connectedness) and then u ∈ L1

loc(Ω).
Note that G is open by definition. If a ∈ Ω and u(a) > −∞, the

area submean-value inequalities yield, for all 0 < r < dist(a, ∂Ω),

−∞ < πr2nu(a) ≤
∫
B(a,r)

u(z) dV (z).

Since u is bounded from above on B(a, r) ⋐ Ω, it follows that u is
integrable on B(a, r). In particular if u(a) > −∞ then a ∈ G, hence
G ̸= ∅, since u ̸≡ −∞.

We finally prove that G is closed. Let b ∈ Ω be a point in the
closure of G and r > 0 so that B(b, r) ⋐ Ω. By definition there exists
a ∈ G ∩ B(b, r). Since u is locally integrable in a neighborhood of a
there exists a point a′ close to a in B(b, r) such that u(a′) > −∞. Since
b ∈ B(a′, r) ⋐ Ω and u is integrable on B(a′, r), it follows that b ∈ G.

The other properties are proved similarly, replacing superficial sub-
mean inequalities by circular ones. □

We end this section by proving the following removable singularity
theorem.

Proposition 1.17. Let w : Ω −→ [−∞,+∞[ be subharmonic func-
tion in Ω such that ew is continuous in Ω and F := {z ∈ Ω;w(z) =
−∞} its closed polar set. Let u : Ω\F −→ [−∞,+∞[ be a subhamonic
function which is locally upper bounded near the point in F . Then u
extends uniquely as a subharmonic function in Ω.

Proof. The hypothesis means that for any a ∈ F , there exsits a
disc D ⋐ Ω and a constant M = MD such that u ≤ M in D \ F .
Therefore the function u∗ is well defined and is the unique upper semi-
continuous extension of u to Ω. To prove the theorem it is enough to
show that u∗ is subharmonic in each disc D ⋐ Ω. For ε > 0, define
the following function vε := u∗ + εw in Ω. Then by definition, uε is
upper semi-continuous in Ω. It is easy to see that vε is subharmonic
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in Ω, since vε = u + εw in Ω \ F and then subharmonic there and
the submean value property is trivially satisfied at points in F since
vε = −∞ in F .

We claim that vε converges pointwise to a subharmonic function v
in Ω. Indeed fix a disc D = D(a, r) ⋐ Ω and let M := maxD̄ w. Then
for any ε > 0, we have

vε = u∗ + ε(w −M) + εM.

It is clear that the family u∗ + ε(w −M) decreases as ε dcereases to
0 so it converges to a function vD which is then subharmonic in D.
Therefore vε → vD poinwise in D and vD = u in D \ F .

It is then easy to see that all the local subharmonic extensions vD
glue into a unique subharmonic function v such that v = u in Ω\F . □

3.2. The maximum principle. The maximum principle is one
of the most powerful tools in Potential Theory:

Theorem 1.18. Assume u is subharmonic in Ω.
1. If u admits a local maximum at some point a ∈ Ω then u is

constant in a neighborhood of a,
2. For any bounded subdomain D ⋐ Ω we have

max
D̄

u = max
∂D

u.

Moreover u(z) < max∂D u for all z ∈ D unless u is constant on D.

Proof. The proof follows the same lines as in the case of har-
monic functions with some modifications due to the fact that u is not
necessarily continuous.

1. By hypothesis there is a disc D(a, r) ⋐ Ω such that u(z) ≤ u(a)
for any z ∈ D(a, r). Fix 0 < s ≤ r and observe that

u(a)− u(a+ seiθ) ≥ 0 for all θ ∈ [0, 2π].

Integrating in polar coordinates gives∫
D(a,r)

(u(a)− u(z))dV (z) ≥ 0,

while the submean-value property shows that the above integral is neg-
ative. Therefore ∫

D(a,r)
(u(z)− u(a))dV (z) = 0.

We infer that u(z)− u(a) = 0 almost everywhere in D(a, r), hence
everywhere in D(a, r) since u is subharmonic. This proves that u is
constant in a neighborhood of a.

2. By compactness and upper semi-continuity we can find a ∈ D̄
such that u(a) = maxD̄ u. If a ∈ D then by the previous case u is
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constant in a neighborhood of a, therefore the set

A := {z ∈ D;u(z) = u(a) = max
D̄

u} = {z ∈ D;u(z) ≥ max
D̄

u}

is open, non empty and closed by upper semi-continuity, hence u is
constant in D. □

Corollary 1.19. Let Ω ⋐ C a bounded domain and u a subhar-
monic function in Ω. Assume that lim supz→ζ u(z) ≤ 0 for all ζ ∈ ∂Ω.
Then u ≤ 0 in Ω.

Proof. Fix ε > 0. By compactness and upper semi-continuity of
u there exists a compact subset K ⊂ Ω such that u ≤ ε in Ω\K. Take
a subdomain D ⋐ Ω such that K ⊂ D and apply Theorem 1.18 to
conclude that u ≤ ε in D. Therefore u ≤ ε in Ω and the conclusion
follows since ε > 0 is arbitrary. □

The following consequence is known as the comparison principle:

Corollary 1.20. Let Ω ⋐ C be a bounded domain and u, v sub-
harmonic functions in L1

loc(Ω) such that the following holds:
(i) For all ζ ∈ ∂Ω, lim infz→ζ(u(z)− v(z)) ≥ 0.
(ii) ∆u ≤ ∆v in the weak sense of distributions in Ω.

Then u ≥ v in Ω.

Proof. Set w := v − u and observe that w is well defined at all
points in Ω where the two functions do not take the value −∞ at
the same time, hence almost everywhere in Ω and w ∈ L1

loc(Ω) (see
Proposition 2.8). From the condition (ii) it follows that ∆w ≥ 0 in the
sense of distributions in Ω.

We infer that w is equal almost everywhere to a subharmonic func-
tion W in Ω (see Proposition 1.25 ). Therefore v = u + W almost
everywhere in Ω, hence everywhere in Ω.

We claim that lim supz→ζ W (z) ≤ 0. Indeed let (zj) ∈ ΩN be a
sequence converging to ζ ∈ ∂Ω. Since lim supzj→ζ(v(zj) − u(zj)) ≤ 0,

it follows that for j > 1 large enough v(zj) − u(zj) < +∞, hence
W (zj) = v(zj) − u(zj) and lim supzj→ζ W (zj) ≤ 0. This proves our
claim. It follows from Corollary 1.19 that W ≤ 0 in Ω as desired. □

3.3. Maximal subharmonic functions. We will show that har-
monic functions can be characterized among subharmonic functions by
the maximum principle.

We first prove the following result.

Proposition 1.21. Let u : D̄ −→ [−∞,+∞[ be an upper semi-
continuous in D̄ which is subharmonic in D. Define the Poisson trans-
form of u in D by the following formula:

PDu(z) :=
1

2π

∫ 2π

0

u(eiθ)
1− |z|2

|eiθ − z|2
dθ.
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Then PDu satisfies the following properties:
1. PDu is harmonic in D, u ≤ PDu in D and for any ζ ∈ ∂D,

lim sup
D∋z→ζ

h(z) ≤ u(ζ);

2. for any harmonic function g in D such that u ≤ g in D, we have
PDu ≤ g in D i.e. h := PDu is the smallest harmonic majorant of u in
D;

Proof. 1. Since the Poisson kernel is harmonic in z ∈ D when
ζ ∈ ∂D, it follows that h := PDu is harmonic in D. Let (ϕj)j∈N be
a decreasing sequence of continuous functions in ∂D converging to u.
It follows from the previous result that hj := PDϕj is harmonic and
hj = ϕj in ∂D. By the maximum principle we have u ≤ hj, which
implies that u ≤ PDu by monotone convergence theorem. On the
other hand by definition we have h = PDu ≤ hj in D. Hence for any
ζ ∈ ∂D, lim supD∋z→ζ h(z) ≤ ϕj(ζ). Now letting j → +∞, we obtain
lim supD∋z→ζ h(z) ≤ u(ζ).

Now since u ≤ PDu = h in D it follows that 2. By scaling the
functions we can assume that they are all defined in a neighborhood of
the closed disc D̄. Then the statement follows from Proposition 1.6. □

Proposition 1.22. 1. Let u : Ω[−∞,+∞[ be a subharmonic func-
tion in a domain Ω ⊂ C. Then for any subdomain G ⋐ Ω and any
continuous function h : Ḡ −→ R which is harmonic in G such that
lim supz→ζ u(z) ≤ h(ζ) for all ζ ∈ ∂G, we have u ≤ h in G.

2. Conversely let w : Ω −→ R be a subharmonic function in a
domain Ω ⊂ C which is maximal in the following sense: for any disc
D̄(a, r) ⊂ Ω and any subharmonic function v in D(a, r), the inequality
v∗ ≤ w in ∂D(a, r) implies v ≤ w in D(a, r). Then w is harmonic in
Ω.

Proof. 1. The first statement follows from the classical maximum
principle applied to the subharmonic function u− h in G.

2. It is enough to prove that w is harmonic in each disc D(a, r) ⋐ Ω.
Let h := PD(a,r)w be the Poisson transform of w in the disc D(a, r).
Then h is harmonic in D(a, r) and w ≤ h in D(a, r). On the other
hand we also know that h∗ ≤ w in ∂D(a, r). Hence by maximality, we
conclude that h ≤ w in D(a, r). Thus we obtain the equality h = w
which proves that w is harmonic in D(a, r). □

3.4. Poisson modification, balayage. We show the following
result which is useful when solving the Dirichlet problem. This called
the balayage procedure.

Proposition 1.23. Let u : Ω −→ [−∞,+∞[ be a subharmonic
function and let D ⋐ Ω be a disc. Then the function ũ defined in Ω by

ũ : PDu in D, ũ = u in Ω \D,
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satisfies the following properties:
1. u ≤ ũ in Ω and ũ = u in Ω \D;
2. ũ is subharmonic in Ω and harmonic in D.

Proof. By the previous result we have that u ≤ ũ in D. Then
it follows that ũ is upper semi-continuous at boundary points ζ ∈ ∂D
and satisfies the submean value inequalities at that point, hence it is
subharmonic in Ω. □

4. Riesz representation formulas

In this section we lay down the foundations of Logarithmic potential
theory. We associate a canonical (Riesz) measure to any subharmonic
function and show how to reconstruct the function from its boundary
values and its Riesz measure.

4.1. The logarithmic potential.

Definition 1.24. We let SH(Ω) denote the set of all subharmonic
functions in the domain Ω which are not identically −∞.

We have seen that the set SH(Ω) is a convex positive cone contained
in L1

loc(Ω).

Proposition 1.25. If u ∈ SH(Ω) then the distribution ∆u ≥ 0 is
a non-negative distribution: for any positive test function φ ∈ D+(Ω),

⟨∆u, φ⟩ =
∫
Ω

u∆φdV ≥ 0.

Conversely if T ∈ D′(Ω) is a distribution such that ∆T ≥ 0 then
there is a unique function u ∈ SH(Ω) such that Tu = T .

Proof. Fix u ∈ SH(Ω). Assume first that u is smooth in Ω and
fix a ∈ Ω. It follows from Taylor’s formula that

∆u(a) = lim
r→0+

2

r2

(
1

2π

∫ 2π

0

u(a+ reiθ)dθ − u(a)

)
.

Since u is subharmonic the right hand side is non negative hence
∆u(a) ≥ 0 pointwise in Ω.

We now get rid of the regularity assumption. It follows from Propo-
sition 2.8 that u ∈ L1

loc(Ω), hence we can regularize u by convolution
setting uε = u ⋆ ρε for ε > 0, using radial mollifiers.

The functions uε are subharmonic as convex combination of sub-
harmonic functions. Since uε is moreover smooth we infer ∆uε ≥ 0,
hence ∆u ≥ 0 since uε → u in L1

loc.
We note for later use that ε 7→ uε is non-decreasing: this follows

from the mean value inequalities and the fact that we use radial and
non-negative mollifiers. In particular uε decreases to u as ε decreases
to zero (cf Proposition 1.13 and Corollary 1.14).
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Let now T be a distribution in Ω and (ρε)ε>0 be mollifiers as above.
Then vε := T ⋆ ρε is a smooth function such that ∆vε = (∆T ) ⋆ ρε ≥ 0
in Ωε, thus vε is subharmonic in Ωε.

We claim that ε 7−→ vε is non decreasing. Indeed for ε > 0 small
enough, the map η 7−→ (vε ⋆ ρη) is non decreasing since vε is subhar-
monic in Ωε. By definition of convolution, we have vε ⋆ ρη = vη ⋆ ρε in
Ωε+η for ε, η > 0 small enough. Therefore for any fixed η > 0 small
enough, the map ε 7−→ vε ⋆ ρη is also non decreasing for small ε. Since
vε ⋆ ρη → vε as η → 0+ the claim follows.

Now since vε is non decreasing in ε > 0 it converges to a subhar-
monic function u as ε decreases to zero. The function u can not be
identically −∞ since Tu = T as distributions (this follows from the
monotone convergence theorem). The uniqueness follows again from
Corollary 1.14: two subharmonic functions which coincide almost ev-
erywhere are actually equal. □

Recall that a positive distribution always extends to a positive Borel
measure (see Exercise 1.12). Therefore if u ∈ SH(Ω) then the positive
distribution (1/2π)∆u can be extended as a positive Borel measure µu

on Ω which we call the Riesz measure of u.

Definition 1.26. The Riesz measure of u ∈ SH(Ω) is

µu =
1

2π
∆u.

Using the complex coordinate z = x+ iy, the real differential oper-
ator acting on smooth functions f : Ω −→ C by

df =
∂f

∂x
dx+

∂f

∂y
dy

splits into d = ∂ + ∂, where the complex differential operators ∂ and ∂
are defined by

∂f =
∂f

∂z
dz and ∂f =

∂f

∂z
dz.

We extend these differential operators to distributions: if f is a
distribution then df is defined as above, but it has to be understood in
the sense of currents of degree 1 on Ω: it is a differential form of degree
1 with distribution coefficients (see next chapter).

Observe that the volume form in C can be writen as

dx ∧ dy =
i

2
dz ∧ dz.

We define the real operator dc by

dc :=
1

2iπ
(∂ − ∂)

so that for u ∈ SH(Ω), we obtain

ddcu =
1

2π
∆u dx ∧ dy = µu dx ∧ dy,
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where µu is the Riesz measure of u and the notation µu dx ∧ dy is
understood in the sense of currents of degree 2: it is a differential form
of degree 2 with distribution coefficients.

Example 1.27. Fix a ∈ Ω. The function z 7→ ℓa(z) := log |z − a|
is subharmonic and satisfies

(4.1) ddcℓa =
1

2π
∆ℓa = δa,

in the sense of distribution, where δa denotes the Dirac mass at the
point a. In particular ℓ0 is a fundamental solution of the linear differ-
ential operator ddc = (2π)−1∆ in C.

The following result connects logarithmic potential theory to the
theory of holomorphic functions in one complex variable:

Proposition 1.28. Let f : Ω −→ C be a holomorphic function
such that f ̸≡ 0, then log |f | ∈ SH(Ω). It satisfies

ddc log |f | =
∑
a∈Zf

mf (a)δa,

where Zf := f−1(0) is the zero set of f in Ω and mf (a) is the order of
vanishing of f at the point a.

Observe that since f ̸≡ 0, the zero set Zf is discrete in Ω, hence
the sum is locally finite.

Proof. On any subdomain D ⋐ Ω the set A := Zf ∩ D is finite
and there exists a non-vanishing holomorphic function g such that

f(z) = Πa∈A(z − a)mf (a)g(z)

for z ∈ D. Since g is zero free, log |g| is harmonic hence

ddc log |f | =
∑
a∈A

mf (a)dd
c log |z − a| =

∑
a∈A

mf (a)δa

in the sense of distributions. □
Let µ be a Borel measure with compact support on C, then

z 7→ Uµ(z) :=

∫
C
log |z − ζ|dµ(ζ) = µ ⋆ ℓ0(z)

is subharmonic in C. Moreover, if z ∈ C \ Supp(µ) then
Uµ(z) ≥ log dist(z, Supp(µ)) > −∞,

and
Uµ(z) ≤ µ(C) log+ |z|+ C(µ), z ∈ C.

It follows that Uµ ∈ SH(C).

Definition 1.29. The function Uµ : z 7→
∫
C log |z − ζ|dµ(ζ) is

called the logarithmic potential of the measure µ.
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Observe that

1

2π
∆Uµ =

(
1

2π
∆ℓ0

)
⋆ µ = µ,

in the sense of distributions on C. This implies that Uµ is subharmonic
in C and harmonic (hence real analytic) in C \ Supp(µ).

4.2. The Riesz decomposition Formula. We can now derive
the Riesz decomposition formula:

Proposition 1.30. Fix u ∈ SH(Ω) and D ⋐ Ω a subdomain.
Then

u(z) =

∫
D

log |z − ζ|dµu(ζ) + hD(z), z ∈ D,

where µu := 1
2π
∆u and hD is a harmonic function in D.

Proof. Apply the last construction to the measure µD := 1D · µu

which is a Borel measure with compact support on C: the function

v(z) :=

∫
D

log |z − ζ|dµu(ζ) = µD ⋆ ℓ0(z)

is subharmonic in C and satisfies

∆v = µD ⋆∆(ℓ0) = 1D(∆u)

in the sense of Borel measures in C. Therefore h := u − v is a locally
integrable function which satisfies ∆h = 0 in the weak sense of distri-
butions in D. It follows from Weyl’s lemma that h coincides almost
everywhere in D with a harmonic function denoted by hD. This implies
that u = v + hD almost everywhere in D hence everywhere in D. □

This result shows that a subharmonic function u coincides locally
(up to a harmonic function which is smooth) with the logarithmic po-
tential of its Riesz measure µu. In particular the information on the sin-
gularities of u (discontinuities, polar points, etc) are contained within
its potential Uµ.

The study of fine properties of subharmonic functions is therefore
reduced to that of logarithmic potentials of compactly supported Borel
measures on C, hence the name Logarithmic Potential Theory.

4.3. Poisson-Jensen formula. The Poisson-Jensen formula is a
generalization of the Poisson formula for harmonic functions in the
unit disc. It is a precise version of the Riesz representation formula
that takes into account the boundary values of the function:

Proposition 1.31. Let u : D −→ [−∞,+∞[ be an upper semi-
continuous function which extends as a subharmonic in a neighjbourhhod
of D. Then for all z ∈ D,

u(z) =

∫ 2π

0

u(eiθ)
1− |z|2

|z − eiθ|2
dθ

2π
+

∫
|ζ|<1

log
|z − ζ|
|1− zζ̄|

dµ(ζ),
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where µ = 1
2π
∆u is the Riesz measure of u.

When u is harmonic in D we recover Poisson formula (Theorem 1.6).
The first term is called the Poisson transform of u in D. This is at
harmonic majorant of u in D. The second term is a non-positive sub-
harmonic function encoding the singularities of u; it is called the Green
potential of the measure µ.

Proof. Fix w ∈ D and set for z ∈ D,

GD(z, w) = Gw(z) := log
|z − w|
|1− zw̄|

Observe that Gw is subharmonic in D, ddcGw = δw in the weak sense
of distributions in D and Gw ≤ 0 in D with Gw identically 0 on ∂D.

It follows from the comparison principle (Corollary 1.20) that Gw

is the unique function having these properties. It is called the Green
function of the unit disc with logarithmic singularity at the point w.

For w ∈ C fixed, we set

Hw(z) :=

∫
∂D

log |ξ − w|PD(z, ξ)dσ(ξ),

where dσ is the normalized Lebesgue measure on ∂D and

PD(z, ξ) :=
1− |z|2

|ξ − z|2
,

is the Poisson kernel for the unit disc. We claim that

Hw(z) = log |z − w| −Gw(z), if w ∈ D,(4.2)

Hw(z) = log |z − w|, if w ∈ C \ D.(4.3)

Indeed if w ∈ D then by Proposition 1.6, the function Hw is harmonic
in D and continuous up to the boundary where it coincides with the
function z 7−→ log |z−w|. Therefore the function g(z) := log |z−w| −
Hw(z) is harmonic in D \ {w}, subharmonic in D with a logarithmic
singularity at w and is 0 on ∂D. The maximum principle thus yields

(4.4) Gw(z) = log |z − w| −Hw(z),

for any z ∈ D, which proves (4.2).
If w ∈ C \ D̄, the function z 7−→ log |z − w| is harmonic in D and

continuous in D̄. Therefore (4.3) follows from the Poisson formula.
By the Riesz representation formula, if D′ is a disc containing D̄ so

that u is subharmonic on D̄′, we have u = Uµ+h in D′, where µ := µD′

and h is a harmonic function in D′. Fubini’s theorem and (4.2), (4.3)
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yield∫
∂D

u(ξ)PD(z, ξ)dσ(ξ) =

∫
∂D

(∫
D′
log |ξ − ζ|dµ(ζ) + h(ξ)

)
PD(z, ξ)dσ(ξ)

=

∫
D′

(∫
∂D

log |ξ − ζ|PD(z, ξ)dσ(ξ)

)
dµ(ζ) + h(z)

=

∫
D′
log |z − ζ|dµ(ζ)−

∫
D
Gζ(z))dµ(ζ) + h(z)

= u(z)−
∫
D
Gζ(z))dµ(ζ),

which is the required formula. □

Remark 1.32. The Poisson-Jensen formula suggests to consider
the following general Dirichlet problem: given a finite Borel measure
on the disc D and a continuous function ϕ in ∂D, find u ∈ SH(D)
which extends to the boundary such that

DP(D, ϕ, µ)
{

∆u = µ in D
u|∂D = ϕ

We shall come back to this in the next section.

5. The classical Dirichlet problem

As we already observed, for any w ∈ C, the function ℓw(z) :=
log |z − w| is a fundamental solution for the Laplace operator i.e.

(1/2π)∆ ℓw = δw,

in the weak sense of distributions on C.
The general Dirichlet problem for the Laplace operator can be

stated as follows.
Let Ω ⋐ C be a bounded domain, ϕ : ∂Ω −→ R a continuous

function and µ a positive Borel measure on Ω. Find a function U ∈
SH(Ω) such that

(5.1)

{
∆U = µ, on Ω
U|∂Ω = ϕ

We call this problem the Dirichlet problem DP(Ω, ϕ, µ) in Ω with
boundray data ϕ and right hand side µ.

It follows from the maximum principle that the solution if it ex-
ists is unique. The following observation, known as the superposition
principle, will simplify the study of the general Dirichlet problem by
splitting it into two problems, the first of which is much easier to treat.

Since the Laplace operator ∆ is linear, we can use the superposition
method: If HΩ,ϕ is the solution to the homogenuous Dirichlet problem
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DP(Ω, ϕ,0) in Ω and VΩ,µ is the solution to the non homogeneous
Dirichlet problem DP(Ω, 0, µ) in Ω then the function

UΩ,ϕ,µ := HΩ,ϕ + Vω,µ

is the unique solution to the Dirichlet problem DP(Ω, ϕ, µ) in Ω.

5.1. The homogenuous Dirichlet problem. We start with a
definition.

Definition 1.33. Let Ω ⋐ C be a domain and ζ ∈ ∂Ω. A (strong)
subbarrier for the Dirichlet problem in Ω at the boundary point ζ is
a subharmonic function bζ in Ω such that bζ < 0 in Ω̄ \ {ζ} and
limz→ζ bζ(z) = 0. A domain is said to be regular for the classical
Dirichlet problem if it admits a subbarrier at each boundary point.

Observe that any disc D(a, r) is regular for the Dirichlet problem,
while the punctured disc is not by the maximum principle.

Let us prove that we can solve the homogenuous Dirichlet problem
with any continuous boundary data when the domain is regular.

Let ϕ be a continuous function in ∂Ω. By the maximum principle,
the solution H to the Dirichlet problem DP(Ω, ϕ, 0) is unique, if it
exists.

Moreover, assume that the Dirichlet problem DP(Ω, ϕ, 0) has a so-
lution H. We prove that H coincides with the maximal subsolution.
Indeed, define a a subsolution to the Dirichlet problem DP(Ω, ϕ, 0) to
be a function u ∈ SH(Ω) which satisfies the boundary condition

u∗(ζ) := lim sup
z→ζ

u(ζ) ≤ ϕ(ζ), ∀ζ ∈ ∂Ω.

and let S(Ω, ϕ) be the class of subsolutions to DP(Ω, ϕ, 0). Then
by definition H ∈∈ S(Ω, ϕ), and by the maximum principle, for any
u ∈ S(Ω, ϕ) we have u ≤ H. Therefore if we can consider the upper
envelope of subsolutions defined by the following formula:

UΩ,ϕ(z) := sup{u(z); u ∈ S(Ω, ϕ)}(5.2)

it follows that that UΩ,ϕ = H in Ω.
In other words, the solution to DP(Ω, ϕ, 0) if it exists, coincides

with the maximal subsolution to DP(Ω, ϕ, 0).
So the stategy for proving the existence of a solution to DP(Ω, ϕ, 0)

is to consider the upper envelope of subsolution defined by (5.2). But
there are many difficulties to overcome:

• Do a subsolution exists i.e. is S(Ω, ϕ) ̸= ∅ ?
• Is the class S(Ω, ϕ) (locally) upper bounded in Ω ?
• Is the upper envelope UΩ,ϕ a subsolution ?
• Is the maximal subsolution UΩ,ϕ a solution ?

We can prove the main result of this section.
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Theorem 1.34. Let Ω ⋐ C be a bounded domain. Then the class
S(Ω, ϕ) is not empty, uniformly bounded in Ω, stable by finite maxima
and Poisson modification over any disc D ⋐ Ω.

Moreover if Ω is regular for the Dirichlet problem and ϕ a con-
tinuous function in ∂Ω, the maximal subsolution UΩ,ϕ is the unique
harmonic function in Ω such that

lim
z→ζ

UΩ,ϕ(z) = ϕ(ζ).

In other words UΩ,ϕ is the unique solution to the Dirichlet problem
DP(Ω, ϕ, 0).

Proof. Indeed the constant fonction u0 = m := min∂Ω ϕ is obvi-
ously a subsolution to DP(Ω, ϕ, 0), hence u0 ∈ S(Ω, ϕ). On the other
hand for any u ∈ S(Ω, ϕ), we have u∗ ≤ ϕ ≤ max∂Ω =:M in ∂Ω, hence
by the maximum principle u ≤M in Ω.

It is clear that S(Ω, ϕ) is stable under finite maxima and Poisson
modification over any disc D ⋐ Ω. Therfore we can apply the Lemma
above to conclude that U∗ is harmonic in Ω ∗ . It remains to show that
U∗ has boudary values equal to ϕ in ∂Ω. It is here where we use the
regularity of the domain Ω. Indeed let ζ0 ∈ ∂Ω be fixed. By regularity,
there exists a subbarrier b0 at the point ζ0. Since ϕ is continuous at ζ0,
given ε > 0, there exists η > 0 such that for any ζ ∈ D(ζ0, η) ∩ ∂Ω we
have ϕ(ζ0)− ε ≤ ϕ(ζ) ≤ ϕ(ζ0) + ε. Let A > 1 be large constant to be
specified. Since b0 < 0 in Ω̄ \ {ζ0}, it follows by compactness that for
A > 1 large enough, we have

Ab0(ζ) + f(ζ0)− ε, ∀ζ ∈ ∂Ω \ D(ζ0, η).
Therefore the function Ab0 + f(ζ0) − ε ∈ S(Ω, ϕ) is a continuous sub-
solution. Hence Ab0(ζ) + ϕ(ζ0) − ε ≤ U in Ω. Taking the limit at ζ0
from inside Ω and letting ε→ 0, we finally get

ϕ(ζ0) ≤ lim inf
z→ζ0

U(z).

The same barrier argument with −ϕ instead of ϕ gives a continuous
subharmonic function v := Ab0 − ϕ(ζ0) − ε with boundary values less
that −ϕ. By the maximum principle for any subsolution u ∈ S(Ω, ϕ),
we have u + v ≤ 0 in Ω, hence U ≤ −v in Ω and U∗|eq − v in Ω by
continuity of v.. As above this implies that

lim sup
z→ζ0

U∗(z) ≤ ϕ(ζ0).

in conclusion for any ζ0 ∈ ∂Ω, limz→ζ0 U
∗(z) = ϕ(ζ0). This implies

that U∗ is a subsolution, hence U∗ =≤ U in Ω. Therefore U is a sub-
harmonic function with ϕ as boundary values. To prove the theorem,
it remains to show that ∆U = µ weakly on Ω. To do so we proceed
by balayage. Let D ⋐ Ω be a disc. Then by Poisson modifiaction we
construct a subahrmonic function Û ∈ SH(Ω) which is harmonic in
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D such that U ≤ Û in Ω and Û = U in Ω \ D. Since Û coincides

with U near the boundary of Ω, it follows that Û = ϕ in ∂Ω. There-
fore Û ∈ S(Ω, ϕ) is a subsolution, hence Û ≤ U . In conclusion we

obtain U = Û in Ω, in particular U is harmonic in D. The theorem is
proved. □

5.2. The Green function. For the unit disc D we have found a
fundamental solution GD(·, w) for the Laplace operator adapted to the
domain D i.e. such that GD(·, w) ≡ 0 on ∂D. This means that GD(·, w)
is the unique solution to the following non homogeneous Dirichlet prob-
lem DP(D, ϕ, µ) in D with µ = δw the Dirac measure δw.

(5.3)

{
(1/2π)∆v = δw in D
v|∂D = 0

This suggests the following general definition.

Definition 1.35. Let Ω ⊂ C be a domain and ξ ∈ D be a fixed
point. We say that Ω admits a Green function with logarithmic pole at
ξ if there exists a fundamental solution to the Laplace operator on the
domain Ω with boundary values 0 (on ∂Ω) i.e. the Dirichlet problem
DP(Ω, 0, δw) with D replaced by Ω has a solution.

Such a function if it exists is unique by the maximum principle. We
denote it by GΩ(·, ξ) : the Green function of Ω with logarithmic pole
at ξ. The function GΩ is called the Green kernel.

The existence of a Green function is closely related to the regularity
of the domain and the solvability of the Dirichlet problem for the ho-
mogenous equation ∆u = 0 in Ω with an arbitary continuous boundary
data.

We now give a useful charaterization of the regularity for the Dirich-
let problem.

Theorem 1.36. Let Ω ⋐ C be a domain with non empty boundary.
Then the following properties are quivalent:

(i) Ω is regular for the (classical) Dirichlet problem,
(ii) the Dirichlet problem DP(Ω, ϕ, {0}) is solvable for any contin-

uous boundary data ϕ.
(iii) there exists a continuous subharmonic function ρ in Ω such

that ∆ρ ≥ 1 weakly on Ω and for any ζ ∈ ∂Ω

lim
z→ζ

ρ(z) = 0.

Such function is called a bounded strictly subharmonic exhaution for
Ω.

Proof. The implication (i) =⇒ (ii) follows from Theorem 1.34.
To prove the implication (ii) =⇒ (iii), consider the solution h of the
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homogenous Dirichlet problem with boundary value ϕ(ζ) := −|ζ|2/2
for ζ ∈ ∂Ω. Then set

ρ(z) := h+ |z|2/2.
is bounded stricly subharmonic exhaution for Ω.

Now let us prove that (iii) =⇒ (i). Fix ζ ∈ ∂Ω and consider the
subharmonic exhaution ρ so that ∆ρ ≥ 1 in Ω. Then the function
defined by bζ(z) := 2ρ(z)− |z − ζ|2 is a continuous function in Ω̄ such
that ∆bζ ≥ 1 on Ω, hence bζ is subharmonic in Ω and provides a
subbarrier at the point ζ. □

It is easy to deduce from this result the existence of the Green
kernel.

Corollary 1.37. Let Ω be a regular domain for the Dirichlet prob-
lem. Then Ω admits a Green function with logarithmic pole at any fixed
point ξ ∈ Ω.;

Proof. Indeed, fix a point ξ ∈ Ω and solve the Dirichlet problem
for the homogenuous Laplace equation in Ω with boundary data h(ζ) :=
− log |ζ− ξ|, which is a continuous function on ∂Ω. If u is the solution,
then the function defined by g(z) := u(z) + log |z − ξ| is subharmonic
in Ω, harmonic in Ω \ {ξ} and has a logarithmic pole at the point ξ.
Since it has zero boundary values, it coincides with the Green function
GΩ(·, ξ). □

We now give some examples and applications of the previous theo-
rem.

Example 1.38. 1. Let D be the unit idsc. Then for any fixed
w ∈ D, the Grenn function GD(·, w) of D with logarithmic pole at w is
given by the formula

GD(z, w) = log
|z − w|
|1− w̄ · z

, z ∈ D.

2. Let F : Ω −→ D be an biholomorphic function. Then for any
fixed ζ ∈ Ω, the Grenn function GΩ(·, ζ) of Ω with logarithmic pole at
ζ is given by the formula

GΩ(z, ζ) = log
|F (z)− F (ζ)|
|1− F̄ (ζ) · F (z)

, z ∈ Ω.

In particular, if F (ζ) = 0 then GΩ(z, ζ) = log |F (z)| for z ∈ Ω.

Corollary 1.39. Let Ω ⊂ C be a simply connected domain such
that Ω ̸= C. Then we have the following properties:

(I) for any fixed point ζ ∈ Ω, there exists a Green function GΩ(·, ζ)
with logarithmic pole at ζ;

(ii) the function GΩ(·, ζ) is the upper envelope of all u ∈ SH(Ω)
such that u ≤ 0 in Ω and u(z)− log |z − ζ| is upper bounded near w.
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(iii) the Green function is symmetric i.e. ∀z, ζ ∈ Ω, GΩ(z, ζ) =
GΩ(ζ, z.

Proof. We first reduce to the case when Ω ⋐ D is bounded. In-
deed, we will show that Ω is isomorphic to a bounded simply connected
domain.

Since Ω is a proper simply connected subdomain of C, its boundary
contains at least two distinct points. Composing with a Möbius trans-
form we can assume that these two points are 0 and 1. Then since Ω
is simply connected, it follows that the square root function defined by

f(z) :=

√
z

z − 1
,

is holomorphic in Ω. Actually the square root function has two branches
f1 = f and f2 = −f . Since f 2

1 = f 2
2 is injective, it follows that

f1 and f2 are injective holomorphic open functions on Ω. Moreover
f1(Ω) ∩ f2(Ω) = ∅ since f(z) ̸= 0 in Ω. Therefore f2(Ω) ⊂ C \ f1(Ω)
and there exists a disc D̄(a, r) ⊂ C \ f1(Ω). Then the function defined
by

h(z) :=
r

f1(z)− a
, z ∈ Ω,

is holomorphic and injective on Ω and its image is contained in the
unit disc. Hence it is an isomorphism from Ω onto a bounded simply
connected domain.

1. We show that the domain Ω is regular for the Dirichlet problem.
Indeed fix ζ ∈ ∂Ω. Then by translation and dilation, we can assume
that ζ = 0 ∈ ∂Ω. Since Ω is a simply connected domain in C \ {0},
there exists a holmorphic branch log of the logarithm on Ω. Therefore
the function defined on Ω by

b0(z) := ℜ(1/ log z)

is a subharmonic barrier function for Ω at the boundary point ζ = 0.
2. Let u be as in the statement and set

v(z) := u(z)−GΩ(z, ζ), z ∈ Ω.

The function u is subharmonic in Ω \ {ζ} and upper bounded near ζ.
Then it extends to a subharmonic function in Ω such that lim supz→ξ v(z) ≤
0 for any ξ ∈ ∂Ω. By the classical maximum principle, we get v ≤ 0 in
Ω, hence u ≤ GΩ(z, ζ).

3. The symmetry of the Green kernel follows from (6.1) in step 2
of the proof of the Riemann mapping theorem given below. □

Remark 1.40. The Green function with logarithmic pole at some
fixed point ξ ∈ Ω gives a weak subbarrier at the boundary point ξ ∈ ∂.
One can prove that a (strong) subbarrier at such point of the boundary
exists. This is the content of Bouligand’s Lemma (see [Ra95, Lemma
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4.1.7]). Hence for a domain Ω ⋐ C, the existence of the Green kernel
GΩ is equivalent to the regularity for the Dirichlet problem.

5.3. The non homogeneous Dirichlet problem. Here we con-
sider the Dirichlet problem for the Laplace equation in a bounded do-
main Ω ⋐ C with zero boundary value and right hand side µ a positive
Borel measure on Ω. We will assume that Ω is regular for the dirichlet
problem. Then by Theorem 1.36 Ω has a bounded stricly subharmonic
exhaution functin ρ such that ∆ρ ≥ 2 in the weak sense on Ω.

We first observe that in general there is no solution.

Example 1.41. Let Ω = D be the unit disc. We know by Poisson-
Jensen formula 1.31 that the solution V of DP(Ω, ϕ, {0}), if it exists,
is given as the Green potential of the measure mu:

V (z) :=
1

2π

∫
D
GD(z, ζ)dµ(ζ),

since V = 0 in ∂D. Let µ be a discrete measure given by µ =
∑

j∈N 2
−jδaj ,

where (aj)j∈N is a sequence of points in D converging to 1. Assume that
the Dirichlet problem DP(Ω, 0, µ) has a solution. Then it is given by

V (z) =
∑
j∈N

εjGD(z, aj).

However since V (aj) = −∞, we have lim infz→1 V (z) = −∞, and
V has not zero boundary values, which is a contradiction.

Hence the the non homogenuous Dirichlet problem in D with bound-
ary values 0 and right hand side µ has no solution.

Observe that lim supz→ζ V (z) = 0 for any ζ ∈ ∂D. The problem is
that there is no subbarrier for the problem at the boundary point 1.

We can prove the following result.

Theorem 1.42. Assume that Ω is regular for the classical Dirichlet
problem and let µ a Borel measure on Ω with density f ≥ 0 continuous
function in Ω̄. Then the Dirichlet problem with boundary values 0 and
right hand side f has a unique solution. It is the maximal subsolution
to the problem.

Proof. Let ρ be a defining subharmonic function for Ω such that
∆ρ ≥ 1. Since f ≤ M := maxΩ̄ f , it follows that the function v(z) :=
Aρ(z) is subharmonic in Ω and for ∆v = A. Then if A > M , it follows
that v is a continuous subbarrier for the Dirichlet problem

Hence the upper envelope of subsolution Vf is a negative subha-
monic function in Ω such that v ≤ Vµ ≤ 0. Since v has zero at the
boundary, it follows that Vf also has zero boundary values.

To prove that ∆Vf = f in the sense of distributions, we cannot
apply the balayage procedure since we have to solve a more complicated
problem. We must proceed differently.
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Assume fist that f is smooth with compact support in Ω. Then
consider the logarithmic potential of the measure with density f defined
as follows:

v(z) :=
1

2π

∫
C
log |z − ζ|f(ζ)dλ(ζ).

Then v is subharmonic in C, harmonic in a neighborhood of the
boundary (in fact in the complement of the support of f) and ∆v = f
weakly on Ω. Since v is continuous in ∂Ω, by Theorem 1.34, there exists
a harmonic function h in Ω wich coincides with −v at the boundary.
Hence v + h is the solution of the Dirichlet problem DP(Ω, 0, f). By
the maximum principle it coincides with the upper envelope Vf .

In the general case, we approximate f uniformly in Ω̄ by smooth
functions (fj) with compact support in Ω. Denote by Vj the solution
for the Dirichlet problem DP(Ω, 0, fj). We claim that the sequence (Vj)
converges uniformly to V := Vf .

We need a stability property. We claim that there exists a constant
C > 0 such that for any j ∈ N,

∥Vj − V ∥L∞(Ω) ≤ C∥fj − f∥L∞(Ω)

By Theorem 1.34, there exists a harmonic function h in Ω such that
h = −|z|2/2 in ∂Ω. Then the function ψ(z) := h(z) + |z|2 solves tha
Dirichlet problem for ∆ψ = 1 with boundary value 0.

Set εj := ∥fj − f∥L∞(Ω). Then by the maximum principle, the
inequality f ≤ fj + εj implies that

Vj + εjψ ≤ V,

while the inequality fj ≤ f + εj implies the inequality

V + εjψ ≤ Vj.

The two inequalities imply that |Vj−V | ≤ −εjψ in Ω, which proves
our claim with the constant C := maxΩ̄(−ψ).

We have proved that Vj → V uniformly in Ω. Then it follows that
∆Vj → ∆V in the weak sense on Ω, hence ∆V = f in the weak on Ω,
which proves our theorem. □

In the general case, we can prove the following result.

Theorem 1.43. Let Ω be a bounded domain regular for the Dirichlet
problem and let µ a Borel measure with finite mass.

Then we have the following properties:
1. if µ has compact support, then its Green potential Vµ given bu

the formula

Vµ(z) :=

∫
Ω

GΩ(z, ζ)dµ(ζ),

is the unique solution to the Dirichlet problem DP(Ω, 0, µ).
2. if there exists v ∈ SH(Ω) such that

∆v ≥ µ on Ω, and v = 0 in ∂Ω,
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the Green potential Vµ is a solution to the Dirichlet problem DP(Ω, 0, µ).

The theorem can be stated quickly by saying that if the problem
has a subsolution (meaning a subbarier) then it has a solution.

Proof. Assume first that µ has compact support. Then Vµ is
subharmonic in Ω and harmonic in Ω\Suppµ. Let D ⋐ Ω be a domain
such that Suppµ ⊂ D ⋐ Ω. We claim that there exists a constant m
such that for any z ∈ Ω \ Supp and ζ ∈ Supp, we have

m ≤ GΩ(z, ζ) ≤ 0.

Assuming the claim, it follows from Lebesgue convergence theorem that
limz→ζ Vµ(z) = 0. To prove the claim, observe that when Ω = D is a
disc, from the explicit formula of GD we see that it is continuous in
D̄×D̄\Σ, where Σ is the diagonal in C2. In the general case, take a big
disc D = D(0, R) containing Ω and observe that by the comparaison
principle for any ζ ∈ Ω, we have GD(z, ζ) ≤ GΩ(z, ζ) ≤ 0.

Now when the support of µ is not compact, we can consider an
increasing sequence (Kj) of compact sets such that Ω = ∪jKj. Let
µj := 1Kj

µ the restriction of the Borel measure µ to Kj. Then by the
first part the corresponding Green potential Vj := Vµj

are subharmonic,
zero boundary values and ∆Vj = µj on Ω. By the comparison principle
since µj ≤ µj+1 ≤ µ ≤ (ddcv)n weakly on Ω, it follows that v ≤ Vj+1 ≤
Vj ≤ 0 in Ω.

By the monotone convergence, it follows that the sequence (Vj)
converge to V in Ω and v ≤ V ≤ 0 in Ω, which implies that V has zero
boundary values and then is the solution to DP(Ω, 0, µ). □

Remark 1.44. In the case when µ has a density such that 0 ≤
f ∈ Lp(Ω) with p > 1, it is possible to show the existence of a solution
which is continuous up the boundary. Here the stability inequality is
much more complicated to prove.

6. Application : The Riemann mapping theorem

As an application of the previous results, we give an elegant poten-
tial proof of a fundamental theorem in Complex Analysis, called the
Riemann mapping theorem.

Theorem 1.45. Let Ω ⊂ C be a simply connected domain such that
Ω ̸= C. Then there exists a unique holomorphic isomorphism F = Fw

of Ω onto the unit disc D such that F (w) = 0 and F ′(w) > 0 and

|Fw(z)| := eGΩ(z,w), z ∈ Ω.

Proof. Step 1 : Construction of a proper holomorphic map from
Ω onto D. By the Theorem 1.39, Ω admits a Green function GΩ with
pole at any w ∈ Ω. Let h(z) := GΩ(z, w)− log |z −w| for z ∈ Ω \ {w}.
Then the function h is harmonic in Ω \ {w} and locally bounded near



32 1. LOGARITHMIC POTENTIAL THEORY

w in Ω\{w}. Therefore it extends into a subharmonic function in Ω by
Proposition 1.17. Let h∗ be the unique harmonic conjugate function of
h in Ω such that h∗(w) = 0. Then the function defined on Ω by

Fw(z) := (z − w)eh+ih∗

is a holomorphic function in Ω such that |Fw(z)| = eGΩ(z,w) < 1 for any
z ∈ Ω and limz→∂Ω |Fw(z)| = 1. Therefore Fw is a proper holomorphic
function from Ω onto D which vanishes only at w.

Step 2 : The Green function is symmetric. Let w, ζ ∈ Ω be fixed.
Let ξ := Fw(ζ) and ϕ ∈ Aut(D) be defined by

ϕ(z) :=
z − ξ

1− ξ̄z
, z ∈ D.

Then ϕ ◦ Fw(ζ) = 0 and ϕ(0) = −ξ. Therefore the function ϕ ◦ Fw

is holomorphic in Ω with value in D and vanishes at ζ. Hence u :=
log |ϕ ◦Fw| is subharmonic, ≤ 0 and u(z)− log |z− ζ is upper bounded
near ζ. Hence by the previous result we obtain u ≤ GΩ(·, ζ).

Therefore |ϕ◦Fw| ≤ |Fζ | in Ω. Applying this inequality at the point
z = w gives |ϕ ◦ Fw(w)| ≤ |Fζ(w)|.

Observing that ϕ◦Fw(w) = ϕ(0) = −Fw(ζ), we obtain the inequal-
ity |Fw(ζ)| ≤ |Fζ(w)|. Reversing the role of : zeta and w we obtain the
equality |Fw(ζ)| = |Fζ(w)|, which means exactely the symmetry of the
Green function:

(6.1) GΩ(ζ, w) = GΩ(w, ζ),∀(z, ζ) ∈ Ω× Ω.

Step 3 : Fw is injective in Ω. Take another point ζ ∈ Ω, ζ ̸= w
and consider the function

u(z) := GD(Fw(z), Fw(ζ))−GΩ(z, ζ).

Then u is subharmonic in Ω \ {ζ} and bounded from above near
ζ. Therefore it extends as a subharmonic function in Ω, denoted by u.
Since u tends to 0 at the boundary of Ω, it follows from the maximum
principle that u ≤ 0 in Ω. Since |Fw(ζ)| = |Fζ(w)| by step 2, it follows
that

u(w) = GD(0, Fw(ζ))−GΩ(w, ζ) = log |Fw(ζ)| − |Fζ(w)| = 0,

Therefore u ≡ 0 in Ω by the maximum principle. This means that

GD(Fw(z), Fw(ζ)) = GΩ(z, ζ),

which implies that Fw is injective. Indeed, if z, w ∈ Ω and z ̸= w
then GΩ(z, ζ) > −∞, hence GD(Fw(z), Fw(ζ) > −∞ and then Fw(z) ̸=
Fw(ζ. □

The theorem may have been suggested to Riemann by physical con-
siderations of fluid flow or electric fields in such domains, for he made
use of the Dirichlet principle which was proved later by D. Hilbert.
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As a consequence, it is useful to see this theorem as the classification
of simply connectd domains in the Riemann sphere.

We consider the compactification of C by adding an extra point at
infinity denoted ∞ i.e.

C̄ := C ∪ {∞}.
We identify C = {z = x+ iy, (x, y) ∈ R2} to the equatorial plan in

R3 given by {(ξ, η, ζ) ∈ R3; ζ = 0}. Then it is easy to show that C̄ is
homeomorphic to the unit sphere

S2 := {(ξ, η, ζ) ∈ R3; ξ2 + η2 + ζ2 = 1}.
The homeomorphic is defined by the stereographic projection from

the north pole: let N := (0, 0, 1) be the north pole of the unit sphere.
Given a point P = (ξ, η, ζ)S2 \{N}, we associate to P the unique point
of intersection of the real lineNP with the equatorial place C ⊂ R3. We
denote this point by M = πN(P ) ∈ C. The map πN : S2 \ {N} → C is
an homeomorphism. An easy computation show that if P = (ξ, η, ζ)S2\
{N} then its image z = πN(P ) is given by

z =
ξ + iη

1− ζ
·

It is clear that πN extends to an an homemorphism πN : S2 ≃ C̄ by
setting πN(N) = ∞.

We could also consider the stereographic projection from the south
pole S := (0, 0,−1). Then map πS : S2 \ {S} → C is an homeomor-
phism. An easy computation show that if P = (ξ, η, ζ) ∈ S2 \{S} then
its image w = πS(P ) is given by

w =
ξ + iη

1 + ζ
·

Observe that for any P = (ξ, η, ζ) ∈ S2 \ {N,S} we have zw̄ = 1.
In other words the map πS ◦ π−1

N : C −→ C sends z ∈ C to w = 1/z̄ is
an inversion with pole at the origin.

In modern language we say that S2 carries a structure of a Riemann
surface. This means that S2 = U ∪ V is covered by two open sets with
the following homeomorphisms:

The stereographic projection from the north pole N

πN : U := S2 \ {N} −→ C
and the conjugate stereographic projection from the south pole S

π∗
S : V := S2 \ {S} −→ C

which satifies the holomorphic compatibility condition that

π∗
S ◦ π−1

N : C \ {0} −→ C \ {0}
is the holomorphic homeomorphism z 7−→ 1/z.

The two coordinates charts (U , πN) and (U , π∗
S) are called a holo-

morphic atlas and allows to define the notion of holomorphic function
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on an open set of the Riemann sphere. A function defined in a neibor-
hood of ∞ is holomorphic if the function z 7−→ f(1/z) is holomorphic
in a neighborhood of the origin.

Then we can obtain the following classification theorem.

Corollary 1.46. Let Ω be a simply connected domain in the Rie-
mann sphere C̄. Then we have the following trichotomy: either Ω = C̄,
or Ω = C, or Ω is isomorphic to one the unit disc D.

This statement is is known as the ”Uniformization Theorem” of Rie-
mann and this trichotomy corresponds to the three possible geometries
that exist on a Riemann surface.

The general version of the Uniformization Theorem can be stated
as follows:

Uniformisation Theorem. Every simply connected Riemann sur-
face is conformally equivalent to the unit disk, the complex plane, or
the Riemann sphere.

The uniformization theorem was first proved by Koebe and Poincaré
independently in 1907. It is a classification theorem of all Riemann
surfaces according to their universal covering spaces into three groups.
Importantly, it reduces many aspects of Riemann surfaces to the study
of the disk, the plane, and the Riemann sphere.

7. Historical comments

As we already said, the term potential theory arises from the fact
that, in 19th century physics, the fundamental forces of nature were be-
lieved to be derived from potentials which satisfied Laplace’s equation.
Hence, potential theory was the study of functions that could serve
as potentials. Nowadays, we know that nature is more complicated
- the equations that describe forces are systems of non-linear partial
differential equations, such as the Einstein equations, the Yang-Mills
equations, and that the Laplace equation is only valid as a limiting case.
Nevertheless, in Mathematical Physics, the term potential theory has
remained as a convenient term for describing the study of functions
satisfying the Laplace equation and its generalisations.

As it was mentioned, originally studies were related to the prop-
erties of forces which follow the law of gravitation. In the statement
of this law given by I. Newton (1643 − 1727) in 1687 the only forces
considered were the forces of mutual attraction acting upon two ma-
terial particles of small size or two material points. These forces are
directly proportional to the product of the masses of these particles
and inversely proportional to the square of the distance between them.
Thus, the first and the most important problem from the point of view
of celestial mechanics and geodesy was to study the forces of attrac-
tion of a material point by a finite smooth material body - a spheroid
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and, in particular, en ellipsoid (since many celestial bodies have this
shape). After first partial achievements by Newton and others, stud-
ies carried out by J. L. Lagrange (1736 − 1813) in 1773, A. Legendre
(1752− 1833) between 1784− 1794 and by P. S. Laplace (1749− 1827)
continued in 1782 − 1799 became of major importance. Lagrange es-
tablished that the field of gravitational forces, as it is called now, is
potential field. He introduced a function which was called in 1828 by
G. Green (1793− 1841) a potential function and later in 1840 by C. F.
Gauss (1777 − 1855) - just a potential. At present, the achievements
of this initial period are included in courses on celestial mechanics.

Already Gauss and his contemporaries discovered that the method
of potentials can be applied not only to solve problems in the theory
of gravitation but, in general, to solve a wide range of problems in
mathematical physics, in particular, in electrostatics and magnetism.
In this connection, potential became to be considered not only for the
physically realistic problems concerning mutual attraction of positive
masses, but also for problems with masses of arbitrary sign, or charges.
Important boundary value problems were defined, such as the Dirich-
let problem and the Neumann problem, the electrostatic problem of
the static distribution of charges on conductors or the Robin problem,
and the problem of sweeping-out mass (balayage method). To solve
the abovementioned problems in the case of domains with sufficiently
smooth boundaries certain types of potentials turned out to be efficient,
i. e., special classes of parameter - dependent integrals such as volume
potentials of distributed mass, single - and double - layer potentials,
logarithmic potentials, Green potentials, etc. Results obtained by A.
M Lyapunov (1857− 1918) and V. A. Steklov (1864− 1926) at the end
of 19th century were fundamental for the creation of strong methods of
solution of the main boundary value problems. Studies in the poten-
tial theory concerning properties of different potentials have acquired
an independent significance.

In the first half of the 20th century, a great stimulus for the gener-
alisation of the principal problems and the completion of the existing
formulations in the potential theory was made on the basis of the gen-
eral notions of a Radon measure, capacity and generalised functions.
Modern potential theory is closely related in its development to the
theory of analytic, harmonic and subharmonic functions and to the
probability theory. Together with further studies of classical bound-
ary value problems and inverse problems, the modern period of the
development of potential theory is characterised by the applications of
methods and notions of topology and functional analysis, and the use
of abstract axiomatic methods.
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8. Exercises

Exercise 1.1.
1) Show that a (real valued) function u (on a metric space) is upper

semi-continuous iff lim supz→a u(z) = u(a) at all points a.

2) Let u : X → R ∪ {−∞} be a bounded upper semi-continuous
function on a metric space (X, d). Show that

x 7→ uk(x) := sup{u(y)− kd(x, y); y ∈ X}
are Lipschitz functions which decrease to u as k increases to +∞,

3) Same question if u is merely bounded from above (replace u by
(sup{u,−j})j∈N and use previous question).

Exercise 1.2. Let u1, . . . , us be subharmonic functions in a domain
Ω ⊂ C. Show that

v := log [eu1 + · · ·+ eus ]

defines a subharmonic function in Ω.
Deduce from this by a rescaling argument that max(u1, . . . , us) is

subharmonic as well.

Exercise 1.3. Let I be an open subset of R. Show that f : I → R
is convex if and only if

lim sup
h→0

[
f(x+ h) + f(x− h)− 2f(x)

h2

]
≥ 0.

Exercise 1.4. Let I be an open subset of R and f : I → R+
∗ a

positive function. Show that log f : I → R is convex if and only if for
all c ∈ R, t ∈ I 7→ ectf(t) ∈ R is convex.

Exercise 1.5. Let fj : R → R be a sequence of convex functions
which converge pointwise towards a function f : R → R. Show that f
is convex and that (fj) uniformly converges towards f on each compact
subset of R.

Exercise 1.6. Let Ω ⊂ C be an open subset of C and u : Ω → R+
∗

a positive function. Show that log u : Ω → R is subharmonic in Ω
if and only if for all a ∈ C, the function va : z ∈ Ω 7→ eℜ(az)u(z) is
subharmonic in Ω. (Consider first the case when u is smooth).

Exercise 1.7.
1. Compute the Laplacian in polar coordinates in C.
2. Let u(z) = χ(|z|), χ a smooth function in [0, R[. Show that

∆u(z) = χ′′(r) +
1

r
χ′(r).

3. Describe all harmonic radial functions in C.
4. Show that u is subharmonic in a disc D(0, R) iff χ is a convex

increasing function of t = log r in the interval ]−∞, logR[.
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Exercise 1.8. Let h : R2 → R be a harmonic function. Assume
there exists C, d > 0 such that

|h(x)| ≤ C[1 + ||x||]d, for all x ∈ R2.

Show that h is a polynomial of degree at most d.

Exercise 1.9. Let ϕ : ∂D → R be a continuous function and let uϕ
denote the Poisson transform of ϕ in the unit disc D ⊂ C.

i) Show that uϕ is Hölder continuous on D if and only if ϕ is Hölder
continuous. Is the Hölder exponent preserved ?

ii) By considering ϕ(eiθ) = | sin θ|, show that ϕ Lipschitz on ∂D
does not necessarily imply that uϕ is Lipschitz on D.

Exercise 1.10. Let µ be a probability measure in C.
1) Show that

φµ(z) :=

∫
w∈C

log |z − w|dµ(w)

defines a subharmonic function with logarithmic growth in C.
2) Show that if φ is a subharmonic function with logarithmic growth

in C, then there exists c ∈ R such that φ = φµ + c, where µ = ∆φ/2π.

3) Approximating µ by Dirac masses, show that every subharmonic
function with logarithmic growth in C can be approximated in L1 by
functions of the type j−1 log |Pj|, where Pj is a polynomial of degree j.

Exercise 1.11. Let (aj) ∈ CN be a bounded sequence which is dense
in the unit disc and let εj > 0 be positive reals such that

∑
j εj < +∞.

Show that the function

z 7→ u(z) :=
∑
j

εj log |z − aj|

belongs to SH(C) and has an uncoutable polar set (u = −∞).
Check that u is discontinuous almost everywhere in the unit disc.

(See [Ra95])

Exercise 1.12. Let Ω ⊂ RN be an open set and T ∈ D′(Ω) be a
non-negative distribution, i.e.

⟨T, χ⟩ ≥ 0

for all non-negative smooth test functions 0 ≤ χ ∈ D(Ω). Show that T
is of order zero, i.e. it can be extended as a continuous (non-negative)
linear form on the space of continuous functions with compact support
in Ω (in other words T extends as a Radon measure).





CHAPTER 2

Plurisubharmonic functions

As we have seen in the previous chapter, subharmonic functions
are intimately related to holomorphic functions and Logarithmic po-
tential Theory has interesting applications to Complex Analysis in one
variable.

Plurisubharmonic functions have been introduced independently in
1942 by Pierre Lelong in France and Kiyoshi Oka in Japan as general-
izations to higher dimension of subharmonic functions .

Oka used them to define pseudoconvex domains and solved the Levi
problem in dimension two. Lelong established their first properties and
was the first to ask for a pluricomplex counterpart of Potential Theory
in Cn, especially after the important work of Cartan on Newtonian
Potentials ([Car45]). He posed influential problems, some of which
named the first and the second Lelong problem remained open for
decades.

These problems have been eventually solved by Bedford and Taylor
in two landmark papers [BT76, BT82] which laid down the founda-
tions of the now called Pluripotential Theory.

Our purpose in this notes is to develop the first steps of Bedford-
Taylor Theory. We haven’t tried to make an exhaustive presentation,
we merely present those results that will be used in the sequel, when
adapting this theory to the setting of compact Kähler manifolds.

On the other hand, plurisubharmonic functions are in many ways
analogous to convex functions. They relate to subharmonic functions of
one complex variable as convex functions of several variables do to con-
vex functions of one real variable. On the other hand plurisubharmonic
functions can have singularities (they are not necessarily continuous,
nor even locally bounded). This makes questions of local regularity
much trickier than for convex functions.

One needs infinitely many (sub mean-value) inequalities to define
plurisubharmonic functions, this is best expressed in the sense of cur-
rents (differential forms with coefficients distributions): a function φ
is plurisubharmonic if and only if the current ddcφ =

√
−1∂∂̄φ is a

positive current (see next chapter).
In this chapter we establish basic properties of plurisubharmonic

functions. We first extend the basic properties of subharmonic func-
tions in the plane to the pluricomplex case, and then move on to study

39
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plurisubharmonic functions (defined as upper semi-continuous func-
tions whose restriction to any complex line is subharmonic).

We give several examples and establish important compactness and
integrability properties of families of plurisubharmonic functions.

We encourage the readers who wish to learn more about pluripoten-
tial theory in domains of Cn to consult the excellent surveys that are
available, notably [Sad81, Bed93, Ceg88, Dem91, Kis00, Klim91,
Blo02, Kol05].

1. Plurisubharmonic functions

We now introduce the fundamental objects that we are going to
study in the sequel. The notion of plurisubharmonic function is the
pluricomplex counterpart of the notion of subharmonic function.

1.1. Basic properties. We fix Ω a domain of Cn.

Definition 2.1. A function u : Ω −→ [−∞ + ∞[ is plurisubhar-
monic if it is upper semi-continuous and for all complex lines Λ ⊂ Cn,
the restriction u|Ω ∩ Λ is subharmonic in Ω ∩ Λ.

The latter property can be reformulated as follows: for all a ∈ Ω,
ξ ∈ Cn with |ξ| = 1 and r > 0 such that B̄(a, r) ⊂ Ω,

(1.1) u(a) ≤ 1

2π

∫ 2π

0

u(a+ reiθξ)dθ.

All basic results that we have established for subharmonic functions
are also valid for plurisubharmonic functions. We state them and leave
the proofs to the reader:

Proposition 2.2.

(1) If u : Ω −→ [−∞,+∞[ is plurisubharmonic in Ω and χ is a
real convex increasing function on an interval containing the
image u(Ω) of u then χ ◦ u is plurisubharmonic in Ω.

(2) Let (uj)j∈N be a decreasing sequence of plurisubharmonic func-
tions in Ω. Then u := limj→+∞ uj is plurisubharmonic in Ω.

(3) Let (X, T ) be a measurable space, µ a positive measure on
(X, T ) and E(z, x) : Ω×X −→ R ∪ {−∞} be such that

(i) for µ-a.e. x ∈ X, z 7−→ E(z, x) is plurisubharmonic,
(ii) ∀z0 ∈ Ω there exists r > 0 and g ∈ L1(µ) such that for

all z ∈ B(z0, r) and µ-a.e. x ∈ X, E(z, x) ≤ g(x).
Then z 7→ V (z) :=

∫
X
E(z, t)dµ(x) is plurisubharmonic.

Recall that a function f : z = (z1, . . . , zn) ∈ Ω 7→ f(z) ∈ C is
holomorphic if it satisfies the Cauchy-Riemann equations ∂f/∂zj = 0
for all 1 ≤ j ≤ n.

Proposition 2.3. Let Ω ⊂ Cn be a domain in Cn and f a holomor-
phic function such that f ̸≡ 0 in Ω. Then log |f | is plurisubharmonic
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in Ω and pluriharmonic in Ω \ {f = 0}. Moreover for any α > 0, |f |α
is plurisubharmonic in Ω.

A function is pluriharmonic if it satifies the linear equations

∂2f

∂zj∂zk
= 0

for all 1 ≤ j, k ≤ n. One shows (like in complex dimension 1) that a
function is pluriharmonic if and only if it is locally the real part of a
holomorphic function.

We add one more recipe known as the gluing construction:

Proposition 2.4. Let u be a plurisubharmonic function in a do-
main Ω. Let v be a plurisubharmonic function in a relatively compact
subdomain Ω′ ⊂ Ω. If u ≥ v on ∂Ω′, then the function

z 7−→ w(z) =

{
max[u(z), v(z)] if z ∈ Ω′

u(z) if z ∈ Ω \ Ω′

is plurisubharmonic in Ω.

Proof. The upper semi-continuity property is clear. Replacing v
by v−ε, one gets that u strictly dominates v−ε in a neighborhood of ∂Ω′

and the corresponding function wε is then clearly plurisubharmonic.
Now w is the increasing limit of wε as ε decreases to zero, so it satisfies
the appropriate submean-value inequalities. □

1.2. Submean-value inequalities. The following result follows
from its analogue in one complex variable.

Proposition 2.5. Let u : Ω −→ [−∞+∞[ be a plurisubharmonic
function. Fix a ∈ Ω and set δ(a) := dist(a, ∂Ω). Then

(i) the spherical submean value inequality holds: for 0 < r < δ(a),

(1.2) u(a) ≤
∫
|ξ|=1

u(a+ rξ) dσ(ξ),

where dσ is the normalized area measure on the unit sphere S2n−1 ⊂ Cn;
(ii) the spatial submean value inequality holds: for 0 < r < δ(a)

and any increasing right continuous function γ on [0, r] with γ(0) = 0,

(1.3) u(a) ≤ 1

γ(r)

∫ r

0

dγ(s)

∫
|ξ|=1

u(a+ sξ) dσ(ξ);

(iii) the toric submean value inequality holds: for 0 < r < δ(a)/
√
n,

(1.4) u(a) ≤
∫
Tn

u(a+ rζ) dτn(ζ),

where dτn is the normalized Lebesgue measure on the torus Tn.

All these integrals make sense in [−∞,+∞[. We will soon see that
they are usually finite (cf Proposition 2.8).
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Proof. The first inequality follows from (1.1) by integration over
the unit sphere in Cn and the second inequality follows from the first
one by integration over [0, r] against the measure dγ. The third in-
equality follows from (1.1) by integration on the torus. □

Remark 2.6. Let u be a plurisubharmonic in Ω. Using polar coor-
dinates we can write∫

|ζ|<1

u(a+ rζ)dλ(ζ) =

∫ r

0

t2n−1dt

∫
|ξ|=1

u(a+ tξ)dσ(ξ).

It follows from (1.3) that

(1.5) u(a) ≤ 1

κ2n

∫
|ζ|<1

u(a+ rζ) dV (ζ),

where κ2n denotes the volume of the unit ball in Cn.
The function u considered as a function on 2n real variables is thus

subharmonic in Ω considered as a domain in R2n.

Definition 2.7. We denote by PSH(Ω) the convex cone of plurisub-
harmonic functions u in Ω such that u|Ω ̸≡ −∞.

The submean-value inequalities imply the following important in-
tegrability result:

Proposition 2.8.

PSH(Ω) ⊂ L1
loc(Ω).

Moreover the restriction of u ∈ PSH(Ω) to any euclidean sphere
(resp. any torus Tn) contained in Ω is integrable with respect to the
area measure of the sphere (resp. the torus).

In particular the polar set P (u) := {u = −∞} has volume zero in
Ω and its intersection with any euclidean sphere (resp. any torus Tn)
has measure zero with respect to the corresponding area measure.

Definition 2.9. A set is called (locally) pluripolar if it is (locally)
included in the polar set {u = −∞} of a function u ∈ PSH(Ω).

It follows from previous proposition that pluripolar sets are some-
how small. We will provide more precise information on their size in
the next chapters.

Proof. Fix u ∈ PSH(Ω) et let G denote the set of points a ∈ Ω
such that u is integrable in a neighborhood of a. We are going to show
that G is a non empty open and closed subset of Ω. It will follow that
G = Ω (by connectedness) and u ∈ L1

loc(Ω).
Note that G is open by definition. If a ∈ Ω and u(a) > −∞, the

volume submean-value inequalities yield, for all 0 < r < dist(a, ∂Ω),

−∞ < κ2nr
2nu(a) ≤

∫
B(a,r)

u(z) dV (z).
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Since u is bounded from above on B(a, r) ⋐ Ω, it follows that u is
integrable on B(a, r). In particular if u(a) > −∞ then a ∈ G, hence
G ̸= ∅, since u ̸≡ −∞.

We finally prove that G is closed. Let b ∈ Ω be a point in the
closure of G and r > 0 so that B(b, r) ⋐ Ω. By definition there exists
a ∈ G ∩ B(b, r). Since u is locally integrable in a neighborhood of a
there exists a point a′ close to a in B(b, r) such that u(a′) > −∞. Since
b ∈ B(a′, r) ⋐ Ω and u is integrable on B(a′, r), it follows that b ∈ G.

The other properties are proved similarly, replacing volume sub-
mean inequalities by spherical (resp. toric) ones (Proposition 2.5). □

Proposition 2.10. Fix u ∈ PSH(Ω), a ∈ Ω and set δΩ(a) :=
dist(a, ∂Ω). Fix γ a non decreasing right continuous function such that
γ(0) = 0. Then

r 7−→Mγ(a, r) :=
1

γ(r)

∫ r

0

dγ(s)

∫
|ξ|=1

u(a+ sξ) dσ(ξ),

is a non-decreasing continuous function in [0, δΩ(a)[ which converges
to u(a) as r → 0.

Proof. This property has already been established when n = 1.
Fix 0 < r < δΩ(a) and observe that for all eiθ ∈ T,∫

|ξ|=1

u(a+ sξ)dσ(ξ) =

∫
|ξ|=1

u(a+ seiθ · ξ)dσ(ξ),

since the area measure on the sphere is invariant under the action of
the circle T. Integrating on the circle and using the one-dimensional
case yields the required property. □

Corollary 2.11. For u ∈ PSH(Ω), a ∈ Ω and 0 < r < δΩ(a),

u(a) ≤ 1

κ2n

∫
|ζ|≤1

u(a+ rζ)dλ(ζ) ≤
∫
|ξ|=1

u(a+ rξ) dσ(ξ).

Corollary 2.12. If two plurisubharmonic functions coincide al-
most everywhere, then they are equal.

Proof. Assume u, v ∈ PSH(Ω) are equal a.e. Then for all a ∈ Ω,

u(a) = lim
r→0

1

κ2n

∫
|ζ|≤1

u(a+ rζ)dλ(ζ)

= lim
r→0

1

κ2n

∫
|ζ|≤1

v(a+ rζ)dλ(ζ) = v(a).

□

We endow the space PSH(Ω) with the L1
loc-topology. The following

property will be used on several occasions in the sequel:
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Proposition 2.13. The evaluation functional

(u, z) ∈ PSH(Ω)× Ω 7−→ u(z) ∈ R ∪ {−∞}

is upper semi-continuous.
In particular if U ⊂ PSH(Ω) is a compact family of plurisubhar-

monic functions, its upper envelope

U := sup{u;u ∈ U}

is upper semi-continuous hence plurisubharmonic in Ω.

Proof. Fix (u, z0) ∈ PSH(Ω) × Ω. Let (uj) be a sequence in
PSH(Ω) converging to u and let r > 0 and δ > 0 be small enough.

We observe first that (uj) is locally uniformly bounded from above.
Indeed, if B(a, 2r) ⊂ Ω, the submean value inequalities yield,

uj(z) ≤
1

κ2nr2n

∫
B(z,r)

uj(w)dV (w) ≤ 1

κ2nr2n

∫
B(a,2r)

|uj(w)|dV (w)

for |z − a| < r. Thus

sup
B(z0,r)

uj ≤
1

κ2nr2n

∫
B(a,2r)

|uj(w)|dV (w) ≤ C,

since U is compact hence bounded.
We can thus assume without loss of generality that uj ≤ 0. The

submean-value inequalities again yield, for |z − z0| < δ,

uj(z) ≤
1

κ2n(r + δ)2n

∫
B(z,r+δ)

ujdλ ≤ 1

κ2n(r + δ)2n

∫
B(z0,r)

ujdλ

Taking the limit in both j and z, we obtain

lim sup
(j,z)→(+∞,z0)

uj(z) ≤
1

κ2n(r + δ)2n

∫
B(z0,r)

udλ.

Let δ → 0+ and then r → 0+ to obtain

lim sup
(j,z)→(+∞,z0)

uj(z) ≤ u(z0),

which proves the desired semi-continuity at point (u, z0).
It follows that the envelope U is upper semi-continuous. Since it

clearly satisfies the mean value inequalities on each complex line, we
infer that U is plurisubharmonic . □

The upper envelope of a family of plurisubharmonic functions which
is merely relatively compact is not necessarily upper semi-continuous.
It turns out that its upper semi-continuous regularization is plurisub-
harmonic .

To study such envelopes, we need the following classical topological
lemma of Choquet which we will use on several occasions.
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Lemma 2.14. Let U be a family of upper semi-continuous functions
and let U := sup{u;u ∈ U} be its upper envelope. There exists a
countable sub-family (uj) in U such that U∗ = (supj uj)

∗ in Ω, where

U∗(z) = lim sup
z′→z

U(z′).

Proof. Assume first that U is locally uniformly bounded from
above. Let B(zj, rj) be a countable basis for the topology of Ω. For
each j let zj,k a sequence in the ball B(zj, rj) such that

sup
B(zj ,rj)

U = sup
k
U(zj,k).

For each (j, k) there exists a sequence (uℓj,k)ℓ∈N in U such that

U(zj,k) = sup
ℓ
uℓj,k(zj,k).

Set V := supj,k,ℓ u
ℓ
j,k. Then V ≤ U hence V ∗ ≤ U∗. Now

sup
B(zj ,rj)

V ≥ sup
k
V (zj,k) ≥ sup

k,ℓ
uℓj,k(zj,k) = sup

k
U(zj,k) = sup

B(zj ,rj)

U,

hence supB(zj ,rj)
V = supB(zj ,rj)

U for all j. Since any B(z, ε) is a union

of balls B(zj, rj), we get supB(z,ε) V = supB(z,ε) U hence V ∗(z) = U∗(z).
To treat the general case we define, for u ∈ U , ũ := χ ◦ u, where

χ : t ∈ R 7→ t/(1 + |t|) ∈] − 1,+1[ is an increasing homeomorphism.
Observe that

Ũ = χ ◦ U and Ũ∗ = χ ◦ U∗

hence the conclusion follows from the previous case applied to Ũ . □
The following result is du to P. Lelong ([Lel57, Lel67]).

Proposition 2.15. Let (ui)i∈I be a family of plurisubharmonic
functions in a domain Ω, which is locally uniformly bounded from above
in Ω and let u := supi∈I ui be its upper envelope. The usc regularization

z 7→ u∗(z) := lim sup
Ω∋z′→z

u(z′) ∈ R ∪ {−∞}

is plurisubharmonic in Ω and {u < u∗} has Lebesgue measure zero.

Proof. It follows from Choquet Lemma 2.16 that there exists an
increasing sequence vj = uij of plurisubharmonic functions such that

u∗ = (lim vj)
∗ .

Set v = lim ↗ vj. This function satisfies various mean-value in-
equalities but it is not necessarily upper semi-continuous. Let χε be
standard radial mollifiers. Observe that, for ε > 0 fixed, vj ∗ χε is an
increasing sequence of plurisubharmonic functions, thus its continuous
limit v ∗ χε is plurisubharmonic and ε 7→ v ∗ χε is increasing.

We let w denote the limit of v ∗χε as ε decreases to zero. The func-
tion w is plurisubharmonic as a decreasing limit of plurisubharmonic
functions. It satisfies, for all ε > 0, w ≤ u ∗ χε since vj ∗ χε ≤ u ∗ χε.
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On the other hand for all ε > 0, u ≤ v∗ ≤ v ∗ χε hence

u ≤ u∗ = v∗ ≤ w ≤ u ∗ χε.

Since u∗χε converges to u in L1
loc, we conclude that u

∗ = w is plurisub-
harmonic. Note that the set {u < u∗} has Lebesgue measure zero. □

We have used the following elementary topological lemma due to
Choquet:

Lemma 2.16. Let U be a family of upper semi-continuous functions
and let U := sup{u;u ∈ U} be its upper envelope. Then there exists a
countable sub-family (uj) in U such that U∗ = (supj uj)

∗ in Ω, where

U∗(z) = lim sup
z′→z

U(z′).

Proof. Assume first that U is locally uniformly bounded from
above. Let B(zj, rj) be a countable basis for the topology of Ω. For
each j let zj,k a sequence in the ball B(zj, rj) such that

sup
B(zj ,rj)

U = sup
k
U(zj,k).

For each (j, k) there exists a sequence (uℓj,k)ℓ∈N in U such that

U(zj,k) = sup
ℓ
uℓj,k(zj,k).

Set V := supj,k,ℓ u
ℓ
j,k. Then V ≤ U hence V ∗ ≤ U∗. Now

sup
B(zj ,rj)

V ≥ sup
k
V (zj,k) ≥ sup

k,ℓ
uℓj,k(zj,k) = sup

k
U(zj,k) = sup

B(zj ,rj)

U,

hence supB(zj ,rj)
V = supB(zj ,rj)

U for all j. Since any B(z, ε) is a union

of balls B(zj, rj), we get supB(z,ε) V = supB(z,ε) U hence V ∗(z) = U∗(z).
To treat the general case we define, for u ∈ U , ũ := χ ◦ u, where

χ : t ∈ R 7→ t/(1 + |t|) ∈] − 1,+1[ is an increasing homeomorphism.
Observe that

Ũ = χ ◦ U and Ũ∗ = χ ◦ U∗

hence the conclusion follows from the previous case applied to Ũ . □
Example 2.17. If f : Ω −→ C is a holomorphic function such

that f ̸≡ 0 and c > 0 then c log |f | ∈ PSH(Ω). Conversely one can
show, when Ω is pseudoconvex, that the cone PSH(Ω) is the closure
(in L1

loc(Ω)) of the set of functions

{c log |f |; f ∈ O(Ω), f ̸≡ 0, c > 0}.

This can be shown by using Hörmander’s L2-estimates [Hor90].

1.3. Differential characterization. We show in this section that
plurisubharmonicity can be characterized by (weak) differerential in-
equalities.
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1.3.1. Plurisubharmonic smoothing. We first explain how any u ∈
PSH(Ω) can be approximated by a decreasing family of smooth plurisub-
harmonic functions (on any subdomain D ⋐ Ω).

Let ρ(z) ≥ 0 be a smooth radial function on Cn with compact
support in the unit ball B ⊂ Cn such that

∫
Cn ρ(z)dλ(z) = 1. We set

ρε(ζ) := ε−2nρ(ζ/ε),

for ε > 0. The functions ρε are smooth with compact support in B(0, ε)
and

∫
Cn ρεdλ = 1, they approximate the Dirac mass at the origin.

Let u : Ω −→ R ∪ {−∞} be a L1
loc-function. We set

Ωε := {z ∈ Ω; dist(z, ∂Ω) > ε}
and consider, for z ∈ Ωε,

uε(z) :=

∫
Ω

u(ζ)ρε(z − ζ)dλ(ζ).

These functions are smooth and converge to u in L1
loc.

Proposition 2.18. If u ∈ PSH(Ω) then the smooth functions uε
are plurisubharmonic and decrease to u as ε decreases to 0+.

Proof. The functions uε are plurisubharmonic as (convex) average
of plurisubharmonic functions. By definition if z ∈ Ωε, we have

uε(z) =

∫
|ζ|<1

u(z + εζ)ρ(ζ)dλ(ζ), z ∈ Ωε.

Integrating in polar coordinates we get

uε(z) =

∫ 1

0

r2n−1ρ(r)dr

∫
|ξ|=1

u(z + εrξ)dσ(ξ).

The monotonicity property now follows from Proposition 2.10. □
We let the reader check that a function u of class C2 is plurisub-

harmonic in Ω iff for all a ∈ Ω and ξ ∈ Cn,

(1.6) Lu(a; ξ) :=
n∑

i=1

n∑
j=1

∂2u

∂zi∂zj
(a)ξiξj ≥ 0.

In other words the hermitian form Lu(a, .) (the Levi form of u at the
point a) should be semi-positive in Cn.

For non smooth plurisubharmonic functions this positivity condi-
tion has to be understood in the sense of distributions:

Proposition 2.19. If u ∈ PSH(Ω) then for any ξ ∈ Cn,∑
1≤j,k≤n

ξj ξ̄k
∂2u

∂zj∂z̄k
≥ 0

is a positive distribution in Ω.
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Conversely if U ∈ D′(Ω) is a distribution such that for all ξ ∈ Cn,

the distribution
∑
ξj ξ̄k

∂2U
∂zj∂z̄k

is positive, then there exists a unique u ∈
PSH(Ω) such that U ≡ Tu.

Each distribution ∂2u
∂zi∂z̄j

extends to a complex Borel measure µj,k̄ on

Ω so that the matrix (µj,k̄) is hermitian semi-positive.

Proof. The proof follows that of Proposition 1.25. Fix ξ ∈ Cn

and consider the linear operator with constant coefficients

∆ξ :=
∑

1≤j,k≤n

ξj ξ̄k
∂2

∂zj∂z̄k
.

Assume first that u is smooth in Ω and fix a ∈ Ω. The one variable
function uξ : ζ 7−→ u(a+ ζ · ξ) is defined on a small disc around 0. For
ζ ∈ C small enough observe that

∂2uξ
∂ζ∂ζ̄

(ζ) = ∆ξu(a+ ζ · ξ).

This yields the first claim of the proposition in this smooth setting.
We proceed by regularization to treat the general case. Since ∆ξ is

linear with constant coefficients, it commutes with convolution,

∆ξuε = (∆ξu)ε

and we can pass to the limit to conclude.
For the converse we proceed as in the proof Proposition 1.25 to

show that the distributions ∂2u
∂zj∂z̄j

are non-negative in Ω. Thus they

extend into non-negative Borel measures in Ω. The mixed complex
derivatives are controlled by using polarization identities for hermitian
forms. □

1.3.2. Invariance properties. Plurisubharmonicity is invariant un-
der holomorphic changes of coordinates, hence it makes sense on com-
plex manifolds. More generally we have the following:

Proposition 2.20. Fix Ω ⊂ Cn and Ω′ ⊂ Cm. If u ∈ PSH(Ω)
and f : Ω′ −→ Ω is a holomorphic map, then u ◦ f ∈ PSH(Ω′).

Proof. Using convolutions we reduce to the case when u is smooth.
Fix z0 ∈ Ω′ and set w0 = f(z0), by the chain rule we get

∂2u ◦ f
∂zi∂z̄j

(z0) =
∑

1≤k,l≤n

∂fk
∂zi

∂fl
∂zj

(z0)
∂2u

∂wk∂w̄l

(w0),

for i, j = 1, · · · ,m. Thus for all ξ ∈ Cn,∑
i,j

ξj ξ̄j
∂2u ◦ f
∂zi∂z̄j

(z0) =
∑
k,l

ηkη̄l
∂2u

∂wk∂w̄l

(w0),

where ηk :=
∑m

i=1 ξi
∂fk
∂zi

(z0) for k = 1, · · · , n.
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This means in terms of the Levi forms that Lu◦f (z0; ξ) = Lu(w0; η),
where η := ∂f(z0) · ξ and w0 := f(z0). The result follows. □

We have observed that plurisubharmonic functions are subharmonic
functions when considered as functions of 2n real variables, identifying
Cn ≃ R2n. Conversely one can characterize plurisubharmonic functions
as those subharmonic functions in R2n ≃ Cn which are invariant under
complex linear transformations of Cn:

Proposition 2.21. Let Ω ⊂ Cn ≃ R2n be a domain and u : Ω →
[−∞,+∞[ an upper semi-continuous function in Ω. Then u is plurisub-
harmonic in Ω iff for any complex affine transformation S : Cn → Cn,
u ◦ S is subharmonic in the domain S−1(Ω) ⊂ R2n.

Proof. One implication follows from Proposition 2.20: if u is
plurisubharmonic, then u ◦ S is subharmonic for any complex affine
trasnformation S : Cn → Cn.

We now prove the converse. Let r > 0 be small enough and z ∈ Ωr.
By assumption for all 0 < ε < 1, the function ξ 7→ u(z1+ rξ1, z

′+ rεξ′)
is subharmonic in ξ in a neighborhood of the unit sphere {|ξ| = 1} in
R2n. The spherical submean value inequality yields

u(z) ≤
∫
|ξ|=1

u(z1 + rξ1, z
′ + rεξ′)dσ(ξ),

where dσ denotes the normalized Lebesgue measure on the unit sphere.
Since u is upper semi-continuous and locally bounded from above, by
Fatou’s lemma, we obtain as ε→ 0

u(z) ≤
∫
|ξ|=1

u(z1 + rξ1, z
′)dσ(ξ).

This means that the function of one complex variable ζ −→ u(ζ, z′) is
subharmonic in its domain. The subharmonicity on other lines follows
from the invariance under complex transformations. □

2. Hartogs lemma and the Montel property

2.1. Hartogs lemma.

Theorem 2.22. Let (uj) be a sequence of functions in PSH(Ω)
which is locally uniformly bounded from above in Ω.

1. If (uj) does not converge to −∞ locally uniformly on Ω, then it
admits a subsequence which converges to some u ∈ PSH(Ω) in L1

loc(Ω).

2. If uj → U in D′(Ω) then the distribution U is defined by a unique
function u ∈ PSH(Ω). Moreover

• uj → u in L1
loc(Ω)

• lim supuj(z) ≤ u(z) for all z ∈ Ω, with equality a.e. in Ω.
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• for any compact set K and any continuous function h on K,

lim supmax
K

(uj − h) ≤ max
K

(u− h).

The last item is usually called Hartogs lemma. When the compact
set K is ”regular”, we actually have an equality,

limmax
K

(uj − h) = max
K

(u− h).

We are not going to study this notion any further here. The reader will
check in Exercise 2.9 that if a compact set is the closure of an open set
with smooth boundary, then it is regular.

Proof. The statement is local so we can assume that Ω ⋐ Cn and
uj ≤ 0 in Ω for all j ∈ N (substracting a constant if necessary).

Since (uj) does not converge uniformly towards −∞, we can find a
compact set E and C > 0 such that

lim sup
j→+∞

max
E

uj ≥ −C > −∞.

Thus there exists an increasing sequence (jk) of integers and a sequence
of points (xk) in E such that the sequence ujk(xk) is bounded from
below by −2C. Extracting again we can assume that xk → a ∈ E. Set
for simplicity vk := ujk for k ∈ N.

We know that vk ∈ L1
loc(Ω) and we claim that if B ⋐ Ω is a ball

around a, the sequence
∫
B
vkdλ is bounded. Indeed for k large enough

there is a ball Bk centered at xk such that B ⊂ Bk ⋐ Ω hence∫
B

vkdλ ≥
∫
Bk

vkdλ ≥ λ(Bk)vk(xk) ≥ −2Cλ(Ω).

By the same reasoning as in the proof of Proposition 2.8, we deduce
from this that the set X of points x ∈ Ω which have a neighborhood
W ⊂ Ω such that the sequence

∫
W
vkdλ is bounded below is closed.

Since it is open (by definition) and not empty (by assumption), we
infer from connectedness that X = Ω.

The sequence (vk) is therefore bounded in L1
loc(Ω), i.e. the sequence

of non-negative measures µk := (−vk)λ is bounded in the weak topol-
ogy of Radon measures on Ω. Thus it admits a subsequence which
converges weakly (in the sense of Radon measures), hence the first
assertion is now a consequence of the second one.

We now prove the second statement. Assume that uj ⇀ U in the
weak sense of distributions on Ω. It follows from Proposition 2.19 that
U = Tu is defined by a plurisubharmonic function u.

We want to show that uj → u in L1
loc(Ω). Fix (ρε) mollifiers as

earlier. We observe that the sequence (uj ⋆ ρε)j∈N is equicontinuous in
Ωε since (uj) is bounded in L1

loc(Ω): indeed fix a ∈ Ωε, 0 < η < ε/2,
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then for x, y ∈ B(a, η),

|uj ⋆ ρε(x)− uj ⋆ ρε(y)| ≤ sup
|t|≤ε

|ρ(x− t)− ρ(y − t)| · ∥uj∥L1(B(a,ε).

Fix K ⊂ Ω a compact set and χ a continuous test function in Ω
such that χ ≡ 1 on K and 0 ≤ χ ≤ 1 on Ω. Then∫

K

|uj − u|dλ ≤
∫
(uj ⋆ ρε − uj)χdλ+

∫
χ|uj ⋆ ρε − u ⋆ ρε|dλ

+

∫
(u ⋆ ρε − u)χdλ.

We use here the key fact that uj ⋆ ρε − uj ≥ 0.
By weak convergence the fist term converges to

∫
(u ⋆ ρε − u)χdλ

and by equicontinuity, uj ⋆ ρε −→ u ⋆ ρε uniformly on K as j → +∞.
Hence

lim sup
j→+∞

∫
K

|uj − u|dλ ≤ 2

∫
(u ⋆ ρε − u)χdλ.

The monotone convergence theorem insures that the right hand side
converges to 0 as ε↘ 0.

Since uj ⋆ ρε −→ u ⋆ ρε locally uniformly in Ωε and uj ≤ uj ⋆ ρε, it
follows that lim supuj ≤ u ⋆ ρε in Ω, hence lim sup uj ≤ u in Ω.

Fatou’s lemma insures that for any fixed compact set K ⊂ Ω,∫
K

udλ = lim
j

∫
K

ujdλ ≤
∫
K

(lim sup
j

uj)dλ ≤
∫
K

udλ

As u − lim supuj ≥ 0 in Ω and
∫
K
(u − lim supuj)dλ = 0, we infer

u− lim supj uj = 0 almost everywhere in K.

To prove the last property, we observe that

max
K

(uj − h) ≤ max
K

(uj ⋆ ρε − h) → max
K

(u ⋆ ρε − h),

where the last convergence follows from the equicontinuity of the family
(uj ⋆ ρε − h) for fixed ε > 0. □

The following consequence is a kind of ”Montel property” of the
convex set PSH(Ω):

Corollary 2.23. The space PSH(Ω) is a closed subset of L1
loc(Ω)

for the L1
loc-topology which has the Montel property: every bounded sub-

set in PSH(Ω) is relatively compact.

2.2. Comparing topologies. Plurisubharmonic functions have
rather good integrability properties: they belong to the spaces Lp

loc

for all 1 ≤ p < +∞ and their gradient are in Lq
loc for all 1 ≤ q < 2:

Theorem 2.24. Let (uj) be a sequence of functions in PSH(Ω)
converging in L1

loc to u ∈ PSH(Ω). Then

(1) the sequence is locally uniformly bounded from above;
(2) uj → u in Lp

loc for all p ≥ 1;
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(3) the gradients Duj converge in Lq
loc to Du for all q < 2.

Together with Theorem 2.22, this result shows that

PSH(Ω) ⊂ Lp
loc(Ω) ⊂ D′(Ω)

and the weak topology of distributions on Ω and the Lp
loc-topology

coincide on the space PSH(Ω) for all p ≥ 1.

Proof. Step 1. We first show that (uj) is locally uniformly bounded
in Lp

loc, for all p ≥ 1. Assume first that n = 1, D̄ ⊂ Ω and u(0) > −∞.
We can assume without loss of generality that u ≤ 0. The Poisson-
Jensen formula yields

(2.1) u(z) =

∫
∂D
u(ζ)

1− |z|2

|z − ζ|2
dσ(ζ) +

∫
|ζ|<1

log
|z − ζ|
|1− zζ̄|

dµ(ζ),

where dσ(ζ) := |dζ|
2π

is the normalized length measure on ∂D and µ :=
∆u
2π

is the Riesz measure of u in D. In particular

u(0) =

∫ 2π

0

u(eiθ)
dθ

2π
+

∫
|ζ|<1

log |ζ|dµ(ζ).

Set

h(z) =

∫
∂D
u(ζ)

1− |z|2

|z − ζ|2
dσ(ζ).

This is a negative harmonic function in the unit disc. It follows from
Harnack inequalities that 3h(0) ≤ h(z) ≤ 3−1h(0) for |z| < 1/2. Thus
for p ≥ 1, (∫

|z|<1/2

|h(z)|pdλ(z)
)1/p

≤ 3(π/4)1/p|h(0)|.

We claim that there is Cp > 0 such that for all a ∈ D,

(2.2)

(∫
|z|<1/2

(
− log

|z − a|
|1− zā|

)p

dλ(z)

)1/p

≤ −Cp log |a|.

Indeed set ha(z) := − log |z−a|
|1−zā| . This is a positive harmonic function

in D \ {a} with a logarithmic singularity at a. Moreover

0 ≤ ha(z) ≤ log
2

|z − a|
,

for |z| < 1, hence for |a| < 1,∫
|z|<1/2

|ha(z)|pdλ(z) ≤ Γ(p+ 1).

The inequality (2.2) is thus valid when |a| ≤ 3/4 with Cp such that

Cp ≥ Γ(p+ 1)1/p/(log(4/3))p.
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Assume now |a| > 3/4. Then ha is a positive harmonic function
near D(3/4). It follows again from Harnack inequalities that

0 ≤ ha(z) ≤ 5ha(0) = 5 log(1/|a|),

for |z| ≤ 1/2. Therefore∫
|z|<1/2

|ha(z)|pdλ(z) ≤ 5p (log(1/|a|))p .

This proves our claim with Cp := max{Γ(p + 1)1/p/(log(4/3)), 5}. It
follows now from Minkowski’s inequality that(∫

|z|<1/2

|u|pdλ(z)
)1/p

≤ Cp(|h(0)|+
∫
|ζ|<1

log(1/|ζ|)dµ(ζ) = Cp|u(0)|.

In higher dimension we use this inequality n-times: if u is plurisub-
harmonic, u ≤ 0 near a+ D̄n

R ⊂ Ω, and u(a) > −∞ then

(2.3)

∫
Dn
1/2

|u(a+Rz)|pdλ(z) ≤ Cnp
p |u(a)|p.

Using the same reasonning as in the proof of Proposition 2.8 we
deduce from (2.3) that the set of points where |u|p is locally integrable
is a non empty open and closed set in Ω, hence u ∈ Lp

loc(Ω).
Recall now that uj → u in L1

loc, thus (uj) does not converge uni-
formly to −∞ on any compact set K ⋐ Ω and it is locally bounded
from above in Ω. Arguing as in the proof of Proposition 2.8 we infer
from (2.3) that the set of point where the sequence |uj|p is locally uni-
formly integrable is a non empty open and closed set in Ω, hence (uj)
is locally bounded in Lp

loc(Ω).

Step 2. We now show that uj → u in Lp
loc(Ω). Fix a compact set

K ⋐ Ω and assume that uj ≤ 0 in K for all j ∈ N.
Assume first that the sequence is locally uniformly bounded. There

exists M > 0 such that for any j ∈ N, −M ≤ uj ≤ 0 on K. We fix a
subsequence (vj) of (uj) such that vj → u almost everywhere. Lebesgue
convergence theorem insures that vj → u in Lp(K). This implies that
u is the unique limit point of the sequence (uj) in L

p
loc(Ω).

To treat the general case we set for m ≥ 1 and j ∈ N

umj := sup{uj,−m}, um := sup{u,−m}.

Minkowski’s inequality yields

∥uj − u∥Lp(K) ≤ ∥uj − umj ∥Lp(K) + ∥umj − um∥Lp(K) + ∥um − u∥Lp(K).

By the monotone convergence theorem, the last term converges to 0
as m → +∞. By the previous case, for a fixed m the second term
converges to 0 as j → +∞. To conclude it is thus enough to show
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that the first term converges to 0 uniformly in j as m→ +∞. Markov
inequality yields, for m ≥ 1 and j ∈ N,∫

K

|uj − umj |pdλ = 2

∫
K∩{uj≤−m}

|uj|pdλ

≤ 2

m

∫
K

|uj|p+1dλ,

which allows to conclude since (uj) is bounded in Lp+1(K).

Step 3. We now establish local uniform bounds on the gradient of u
in Lp(Ω) for 1 ≤ p < 2. Assume first that n = 1. It suffices to consider
the case when 2D ⋐ Ω and u(0) > −∞ and get a uniform estimate on
D1/2.

The Poisson-Jensen formula (2.1) shows that for z ∈ D,

2∂zu(z) = 2∂zh(z) +

∫
D

1− |ζ|2

(z − ζ)(1− zζ̄)
dµ(ζ).

Since h is harmonic, the representation formula yields

∂zh(z) =

∫
∂D
u(ζ)∂zP (z, ζ)dσ(ζ)

when z ∈ D. Since

∂zP (z, ζ) =
−z̄

|z − ζ|2
− (|1− |z|2)(ζ̄ − z̄)

|z − ζ|4
,

it follows that for |z| ≤ 1/2,

|∂zh(z)| ≤ 6

∫
∂D

|u(ζ)|dσ(ζ) ≤ 6∥u∥L1(D).

We have used here (2.11) and the fact that u ≤ 0.
We need a uniform estimate for the second term which we denote

by g(z). From the expression of g we get

|g(z)| ≤ 2

∫
D

dµ(ζ)

|z − ζ|
.

Using Minkowski’s inequality we deduce that

∥g∥Lp({|z|<1/2}) ≤ 2

∫
D

(∫
{|z|<1/2}

dλ(z)

|z − ζ|p

)1/p

dµ(ζ)

≤ 2π
22−p

2− p

∫
D
dµ.

Since 2D ⋐ Ω we apply Stokes’ formula to get∫
D
dµ =

∫
D
ddcu ≤ 1

3

∫
D
(4− |z|2)ddcu ≤ 1

3

∫
2D
(−u)dλ(z).
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Adding all these inequalities, we get a uniform bound on the gra-
dient of u in the disc |z| ≤ 1/2,

∥∂zu∥Lp( 1
2
D) ≤ cp∥u∥L1(2D),

where cp is a uniform constant depending only on p.
Using these inequalities n times we get a local uniform bound for

the gradient of any function u ∈ PSH(Ω). In particular for any p < 2,
we have PSH(Ω) ⊂ W 1,p

loc (Ω) and the inclusion operator takes bounded
sets onto bounded sets.

Step 4. We finally prove that this inclusion is continuous. Let
(uj) ∈ PSH(Ω)N be a sequence converging to u in L1

loc. Since plurisub-
harmonic functions are subharmonic in R2n, it follows from Exercise
2.10 that Duj → Du in L1

loc, hence almost everywhere (up to extract-
ing and relabelling). The local uniform bounds for ||Duj||Lq , q < 2,
allow to conclude as above that Duj → Du in Lq

loc for all q < 2. □

3. Currents in the sense of de Rham

We let in this section Ω denote an open subset of RN N ≥ 2.

3.1. Forms with distributions coefficients. A differential form
α of degree p on Ω with locally integrable coefficients

α =
∑
|I|=p

αIdxI ,

acts as a linear form on the space of continuous test forms of comple-
mentary degree q = N − p: if ψ = χdxK is a continuous test form of
degree q with compact support then

< α,ψ >=
∑
|I|=p

εI,K

∫
Ω

χαI dV,

where εI,K is such that dxI ∧ dxK = εI,K dV , with εI,K = 0 unless
K = Ic complements I in [1, N ] in which case εI,K = ±1.

Definition 2.25. A current S of degree p is a continuous linear
form on the space DN−p(Ω) of test forms (i.e. smooth differential forms
with compact support) of degree N − p on Ω.

We let D′
N−p(Ω) denote the space of currents of degree p. The action

of S on a test form Ψ ∈ DN−p(Ω) is denoted by < S,Ψ >.

If α is a smooth fom of degree q the wedge product of α and S is
defined as follows:

Definition 2.26. For a test form Ψ of degree N − p− q, we set

< S ∧ α,Ψ >:=< S, α ∧Ψ > .

We define similarly α ∧ S := (−1)pqS ∧ α.
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Observe that the current S ∧ α ∧Ψ is a current of maximal degree
with compact support, it can be identified with a distribution with
compact support. One can similarly interpret a current of degree p as
a differential form of degree p with distribution coefficients.

3.2. Closed currents. When S is a smooth form of degree p in
Ω and Ψ is a test form of degree N − p− 1,

d(S ∧Ψ) = dS ∧Ψ+ (−1)pS ∧ dΨ.
Since S ∧ Ψ is a differential form with compact support, it follows

from Stokes formula that
∫
Ω
d(S ∧Ψ) = 0 hence∫

Ω

dS ∧Ψ = (−1)p+1

∫
Ω

S ∧ dΨ

This suggests the following definition:

Definition 2.27. If S is a current of degree p then dS is the current
of degree (p+ 1) defined by

< dS, ψ >= (−1)p+1 < S, dψ >,

where ψ is any test form of degree N − p− 1.

This definition allows one to extend differential calculus on forms
to currents. It follows from the definition that a current of degree p is
a differential p-form T =

∑
|I|=p TIdxI , with distribution coefficients.

We set

dT =
∑
|I|=p

∑
1≤j≤N

∂TI
∂xj

dxj ∧ dxI

where ∂TI

∂xj
is the partial derivative of the distribution TI acting on test

functions according to Stokes formula by

<
∂TI
∂xj

, ψ >= − < TI ,
∂ψ

∂xj
> .

The reader can check that this is consistent with the above defini-
tion of dT .

Most properties valid in the differential calculus on forms extend to
currents. In particular if T is a current of degree p and α is a differential
form of degree m, then

d(T ∧ α) = dT ∧ α+ (−1)pT ∧ dα,
as the reader may check.

The following version of Stokes’ formula for currents will be used
on several occasions:

Lemma 2.28. Let S be a current of degree N − 1 with compact
support in Ω. Then ∫

Ω

dS = 0.
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Proof. Let χ be a smooth cut off function in Ω such that χ ≡ 1
in a neighborhood of K, a compact subset of Ω containing the support
of S. Then ∫

Ω

dS =

∫
Ω

χdS =< S, dχ >= 0,

since dχ = 0 in a neighborhood of the support of S. □

3.3. Bidegree. Assume now Ω ⊂ Cn is a domain in the complex
hermitian space Cn. The complex structure induces a splitting of dif-
ferential forms into types. The space of test forms of bidegree (q, q)
will be denoted by Dq,q(Ω), where 0 ≤ q ≤ n.

Definition 2.29. A current T of bidegree (p, p) is a differential
form of bidegree (p, p) with coefficients distributions, i.e.

T = ip
2

∑
|I|=|J |=p

TI,JdzI ∧ dz̄J ,

where TI,J ∈ D′(Ω).

A current of bidegree (p, p) acts on the space Dq,q(Ω), q := n − p,
of test forms of bidegree (q, q) as follows: if

Ψ = iq
2

∑
|K|=|L|=q

ψK,LdzK ∧ dz̄L,

where ψK,L ∈ D(Ω), then

< T,Ψ >=
∑

|I|=p,|J |=q

< TI,I′ , ψJ,J ′ >,

since ip
2
dzI ∧ dz̄J ∧ iq

2
dzK ∧ dz̄L = εI,JεK,Lidz1 ∧ dz1 ∧ · · · ∧ idzn ∧ dzn.

One defines similarly currents of bidegree (p, q).

Remark 2.30. We shall also say that a current of bidegree (p, p)
is a current of bidimension (n − p, n − p), since it acts on forms of
bidegree (n− p, n− p).

Recall the decomposition d = ∂+∂. We have defined the differential
dS of a current, we can similarly define the derivatives ∂S and ∂S
as follows. If S is a smooth differential form of bidegree (p, p) and
Ψ ∈ D(n−p−1,n−p)(Ω), observe that

∂S ∧Ψ = dS ∧Ψ = d(S ∧Ψ)− S ∧ dΨ = d(S ∧Ψ)− S ∧ ∂Ψ.
hence

∫
Ω
∂S ∧Ψ = −

∫
Ω
S ∧ ∂Ψ. This suggests the following:

Definition 2.31. Let S be a current of bidegree (p, p). The current
∂S is a current of bidegree (p+ 1, p) defined by

< ∂S,Ψ >= − < S, ∂Ψ >

for all Ψ ∈ D(n−p−1,n−p)(Ω). We define ∂̄S similarly.
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We set dc := (i/2π)(∂ − ∂). Observe that d and dc are real differ-
ential operators of order one and

ddc =
i

π
∂∂

is a real differential operator of order 2. These operators act naturally
on differential forms, their actions are extended to currents by duality.

Lemma 2.32. Let S be a current of bidegree (p, p), 0 ≤ p ≤ n− 1,
and Ψ a smooth form of bidegree (q, q), 0 ≤ q ≤ n − p − 1. If α is a
smooth form of bidegree (n− p− q − 1, n− p− q − 1) then

dS ∧ dcΨ ∧ α = dΨ ∧ dcS ∧ α

and

S ∧ ddcΨ ∧ α− ddcS ∧Ψ ∧ α = d(S ∧ dcΨ−Ψ ∧ dcS) ∧ α.

If Ψ is a smooth test form of bidegree (n− p− 1, n− p− 1) then

< ddcS,Ψ >=< S ∧ ddcΨ, 1 > .

Proof. Observe that

dΨ ∧ dcS =
(
∂Ψ+ ∂Ψ

)
∧ i

2π

(
∂S − ∂S

)
=

i

2π

(
∂Ψ ∧ ∂S + ∂S ∧ ∂Ψ+ ∂Ψ ∧ ∂S − ∂Ψ ∧ ∂S

)
.

Similarly

dS ∧ dcΨ =
i

2π

(
∂S ∧ ∂Ψ+ ∂Ψ ∧ ∂S + ∂S ∧ ∂Ψ− ∂S ∧ ∂Ψ

)
,

in the weak sense of currents on Ω.
The currents dΨ ∧ dcS and dS ∧ dcΨ = −dcΨ ∧ dS have the same

(p+ q + 1, p+ q + 1)−part hence

dΨ ∧ dcS ∧ α = dS ∧ dcΨ ∧ α,

since ∂S ∧ ∂Ψ ∧ α = 0 = ∂Ψ ∧ ∂S ∧ α. On the other hand,

d(Ψ ∧ dcS − S ∧ dcψ) = dΨ ∧ dcS +Ψ ∧ ddcS − dS ∧ dcΨ− S ∧ ddcΨ.

The last formula is obtained taking α = 1 and applying Lemma 2.28.
□

4. Positive currents

The notion of positive current was introduced y Lelong to unify the
notion of plurisubharmonic functions and intergation along analytic
sets (see [Lel69]).
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4.1. Positive forms. Let V be a complex vector space of complex
dimension n ≥ 1. Consider a basis (ej)1≤j≤n of V and denote by
(e∗j)1≤j≤n the dual basis of V ∗. Then any v ∈ V can be written

v =
∑

1≤j≤n

e∗j(v)ej.

Since we are mainly interested in the case where V = TxX is the
complex tangent space to a complex manifold X of dimension n, we
use complex differential notations. A vector v ∈ V acts as a derivation
on germs of smooth functions in a neighborhood of the origin in V by

v · f(0) := Dvf(0).

If z = (z1, · · · , zn) are complex coordinates identifying V with Cn, then
ej =

∂
∂zj

is the partial derivative with respect to zj and e
∗
j = dzj.

The exterior algebra of V is

ΛV ∗
C := ⊕Λp,qV ∗, Λp,qV ∗ := ΛpV ∗ ⊗ ΛqV ∗,

where ΛpV ∗ is the complex vector space of alternated C−linear p−forms.
A complex basis of the space ΛpV ∗ is given by the dzk1∧. . .∧dzkp where
K = (k1, . . . , kp) vary in the set of ordered multi-indices of length

|K| = p. Thus dimCΛ
pV ∗ =

(
n
p

)
.

The complex vector space V has a canonical orientation given by
the (n, n)−form

βn(z) :=
i

2
dz1 ∧ dz1 ∧ . . . ∧

i

2
dzn ∧ dzn = dx1 ∧ dy1 . . . ∧ dxn ∧ dyn,

where zj = xj + iyj, j = 1, . . . , n. If (w1, . . . , wn) is another (complex)

coordinate system on V , then dw1∧ . . .∧dwn = det(
∂wj

∂zk
)dz1∧ . . .∧dzn

so that

βn(w) = |det(∂wj/∂zk)|2βn(z).
In particular any complex manifold inherits a canonical orientation
induced by its complex structure.

Definition 2.33.
1) A (n, n)-form ν ∈ Λn,nV ∗ is positive if in some local coordinate

system (z1, . . . , zn) it can be written ν = λ(z)βn(z), with λ(z) ≥ 0.
2) A (p, p)-form f ∈ Λp,pV ∗(0 ≤ p ≤ n) is strongly positive if it

is a linear combination with positive coefficients of a finite number of
decomposable (p, p)−forms, i.e. forms of the type

iα1 ∧ α1 ∧ . . . iαp ∧ αp,

where α1, · · · , αp are (1, 0)−forms on V .
3) A (p, p)−form u ∈ Λp,pV ∗(1 ≤ p ≤ n− 1) is (weakly) positive if

for all (1, 0)−forms αj ∈ Λ1,0V ∗, (1 ≤ j ≤ q := n−p), the (n, n)−form
u ∧ iα1 ∧ α1 ∧ . . . iαq ∧ αq is positive.
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Examples 2.34.
1) For all (1, 0)−forms γ1, . . . , γp ∈ Λ1,0V ∗, the (p, p)-form

iγ1 ∧ γ1 ∧ . . . iγp ∧ γp = ip
2

γ ∧ γ,
is positive, where γ := γ1 ∧ . . . ∧ γp.

2) For all α ∈ Λp,0V ∗, the (p, p)−form ip
2
α ∧ α is positive, hence

any strongly positive (p, p)−form is (weakly) positive. If α ∈ Λp,0V ∗

and β ∈ Λq,0V ∗, then

ip
2

α ∧ α ∧ iq2β ∧ β = i(p+q)2α ∧ β ∧ α ∧ β.
In particular if p+ q = n, then α ∧ β = λdz1 ∧ . . . ∧ dzn, λ ∈ C, hence

in
2

α ∧ β ∧ α ∧ β = |λ|2βn(z) ≥ 0.

The following lemma will be useful in the sequel.

Lemma 2.35. Let (z1, . . . , zn) be a coordinate system in V. The com-
plex vector space Λp,pV ∗ is generated by the strongly positive forms

(4.1) γ := iγ1 ∧ γ1 ∧ . . . iγp ∧ γp,
where the (1, 0)−forms γl are of the type dzj ± dzk or dzj ± idzk.

Proof. The proof relies on the following polarization identities for
the forms dzj ∧ dz̄k
4dzj ∧ dzk = (dzj + dzk) ∧ (dzj + dzk)− (dzj − dzk) ∧ (dzj − dzk)

+ i(dzj + idzk) ∧ (dzj + idzk)− i(dzj − idzk) ∧ (dzj − idzk).

Since

dzJ ∧ dzK = dzj1 ∧ . . . ∧ dzjp ∧ dzk1 ∧ . . . ∧ dzkp = ±
∧

1≤s≤p

dzjs ∧ dzks ,

it follows that the (p, p)−forms γs of type (4.1) generate the space
Λp,pV ∗ over C. □

Corollary 2.36.
1. All positive forms u ∈ Λp,pV ∗ are real i.e. ū = u and if u =

ip
2 ∑

|I|=|J |=p uI,JdzI ∧ dz̄J then the coefficients satisfy the hermitian
symmetry relation ūI,J = uJ,I for all I, J .

2. A form u ∈ Λp,pV ∗ is positive if and only if its restriction to
any complex subspace W ⊂ V of dimension p is a positive form of top
degree on W .

Proof. Let (θs) be the basis of Λ
p,pV ∗ dual to the basis of strongly

positive forms (γs) of Λ
n−p,n−pV ∗ given by Lemma 2.35. Observe that

strongly positive forms are real. If α ∈ Λp,pV ∗ is positive, we decompose
it as α =

∑
s csθs with cs = α ∧ γs ≥ 0 for any s. Thus α = α.

Suppose that α = ip
2 ∑

|I|=p,|J |=p αI,JdzI ∧ dzJ , then

α = (−1)p
2

ip
2

∑
|I|=p,|J |=p

αI,JdzI ∧ dzJ .
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Since dzI ∧ dzJ = (−1)p
2
dzJ ∧ dzI , it follows that αI,J = αJ,I , ∀I, J.

If W ⊂ V is a complex subspace of dimension p, there exists a
system of complex coordinates (z1, . . . , zn) such that

W = {zp+1 = . . . = zn = 0}.

Thus α|W = cW
i
2
dz1 ∧ dz1 ∧ . . . i

2
dzp ∧ dzp, where cW is given by

α ∧ i

2
dzp+1 ∧ dzp+1 ∧ . . .

i

2
dzn ∧ dzn = cWβn(z).

Therefore if α is positive then α|W ≥ 0 for any complex subspace
W ⊂ V of dimension p. The converse is true since the (n − p, n − p)-
forms ∧j>pidzj ∧ dzj generate the cone of strongly positive (p, p)-forms
when W varies among all complex subspaces W of dimension p. □

Corollary 2.37. A (1, 1)-form ω = i
∑

j,k ωjkdzj ∧ dz̄k is positive

if and only if the matrix (ωjk) is a hermitian semi-positive matrix i.e.∑
j,k

ωjkξj ξ̄k ≥ 0 for all ξ ∈ Cn.

Proof. Indeed, if W = C · ξ is a complex line generated by the
vector ξ ̸= 0, then ω|W = (

∑
j,k ωj,kξjξk)idt ∧ dt. □

Remark 2.38. There is a canonical correspondence between her-
mitian forms and real (1, 1)-forms on V. Indeed in a system of complex
coordinates (z1, . . . , zn), a hermitian form can be written as

h =
∑

1≤j,k≤n

hj,kdzj ⊗ dzk.

The associated (1, 1)−form

ωh :=
i

2

∑
1≤j,k≤n

hj,kdzj ∧ dzk

is a real (1, 1)-form on V . This correspondence does not depend on the
system of complex coordinates since for all ξ, η ∈ V,

ωh(ξ, η) =
i

2

∑
1≤j,k≤n

hj,k(ξjηk − ηjξk) = −ℑh(ξ, η),

and hk,j = hj,k. Moreover

ωh(iξ, η) = −ℑh(iξ, η) = ℜh(ξ, η),

for all (ξ, η) ∈ V, which proves that h is entirely determined by ωh.
Observe finally that h is a positive hermitian form on V if and only

if the (1, 1)−form ωh is positive.

The notions of positivity (strong and weak) usually differ, but they
do coincide in bidegree (1, 1):
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Proposition 2.39. A (1, 1)-form is strongly positive if and only if
it is weakly positive. In particular if α ∈ Λp,pV ∗ is a weakly positive
form on V then for all positive (1, 1)−forms ω1, . . . ωq with p+ q ≤ n,
the (p+ q, p+ q)-form α ∧ ω1 ∧ . . . ∧ ωq is weakly positive.

Proof. Let ω ∈ Λ1,1V ∗ be a positive (1, 1)-form on V . Diagonal-
izing the hermitian form h associated to ω, we see that

ω =
∑

1≤j≤r

iγj ∧ γj,

where γj ∈ V ∗ for 1 ≤ j ≤ r. Thus ω is strongly positive. □

We finally define the positivity of differential forms as follows:

Definition 2.40. A smooth differential (q, q)-form ϕ ∈ Dq,q(Ω) in
an open set Ω ⊂ Cn is positive (resp. strongly positive) if for all x ∈ Ω,
the (q, q)-form ϕ(x) ∈ Λq,qCn is positive (resp. strongly positive).

4.2. Positive currents. The duality between positive and strongly
positive forms enables us to define the corresponding positivity notions
for currents:

Definition 2.41. A current T of bidimension (q, q) is (weakly)
positive if ⟨T, ϕ⟩ ≥ 0 for all strongly positive differential test forms ϕ
of bidegree (q, q).

It follows from the definitions that T is positive iff for all α1, · · · , αq ∈
D1,0(Ω), T ∧ iα1 ∧ ᾱ1 ∧ · · · iαq ∧ ᾱq ≥ 0 as a distribution on Ω.

Here is an important consequence of this definition.

Proposition 2.42. Let T ∈ D′
q,q(X) be a positive current and set

p := n− q. Then T can be extended as a real current of order 0 i.e.

T = ip
2

∑
|I|=|J |=p

TI,JdzI ∧ dzJ ,

where the coefficients TI,J are complex measures in Ω satisfying the
hermitian symmetry TI,J = TJ,I for any multi-indices |I| = |J | = p.

Moreover for any I, TI,I ≥ 0 is a positive Borel measure in Ω and
the (local) total variation measure

∥T∥ :=
∑

|I|=|J |=p

|TI,J |

of the current T is bounded from above by the trace measure,

(4.2) ∥T∥ ≤ cp,n
∑
|K|=p

TK,K ,

where cp,n > 0 are universal constants.
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Proof. Since positive forms are real, it follows by duality that
every positive current is real, as the current T is defined by the formula

T (ϕ) := T (ϕ) for ϕ ∈ Dn−p,n−p(X).
It follows from Lemma 2.35 that any form φ ∈ Dn−p,n−p(U) can

be written as ϕ =
∑

s csγs where (γs) is a basis of strongly positive
(n− p, n− p)−forms

If ϕ is real the functions cs are real C∞-smooth with compact sup-
port in Ω. Writing cs as a difference of non-negative C∞-smooth func-
tions with compact support, the real form ϕ can be written as the
difference of strongly positive forms, hence T (ϕ) is a difference of two
positive reals. We infer TI,J = TJ,I for all multi- indices |I| = |J | = p.

Observe now that

TI,Iβn = T ∧ ip
2

2p
dzI′ ∧ dzI′ ≥ 0,

while the proof of Lemma 2.35 yields

TI,J2
pβn = T ∧ ip2dzI′ ∧ dzJ ′ =

∑
ν∈{0,1,2,3}

ενT ∧ γν ,

where εν = ±1,±i and

γν =
∧

1≤s≤p

iℓν,s ∧ ℓν,s,

where ℓν,s are C−linear forms on Cn. Since T ∧γa is a positive measure
on Ω, the distributions TI,J are complex measures in Ω such that

2p|TI,J |βn ≤
∑
ν

T ∧ γν .

The only terms that matter here are those for which

γν =
∧

1≤s≤p

iℓν,s ∧ ℓν,s ̸= 0.

We can thus assume that the C−linear forms ℓν,1, . . . , ℓν,s are linearly
independent. Fix such ν and set ℓs = ℓν,s. There exists a unitary
transformation A : Cn

z −→ Cn
w such that the direct image A⋆ sends the

subspace of (Cn)∗ generated by the C-linear 1-forms (ℓs)1≤s≤p onto the
subspace generated by the 1-forms (dws)1≤s≤p. Therefore

A⋆(
∧

1≤s≤p

ℓs ∧ ℓs) =
∧

1≤s≤p

A⋆(ℓs) = |det(∂ℓ̃s/∂wk)|2
∧

1≤k≤p

dwk ∧ dw̄k.

Hence

A⋆(T ∧ γν) = aνA⋆(T ) ∧
∧

1≤k≤p

i

2
dwk ∧ dw̄k = aνA⋆(T )

ip

2q
dwK ∧ dwK ,

where K := (1, 2, . . . , p) and for all ν, aν ≥ 0 is a constant which does
not depend on T. Thus

A⋆(T ∧ γν) ≤ aνA⋆(T ) ∧ βn(w).
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and

T ∧ γν ≤ aνT ∧ (A−1)⋆(βn) = aνT ∧ βp,
since β is invariant by unitary transformations on Cn. Observe that

βp =
∑
|K|=p

(
i

2

)p ∧
1≤s≤p

dzks ∧ dz̄ks =
∑
|K|=p

iq
2

2p
dzK ∧ dz̄K ,

hence T ∧βp =
∑

|L| TL,L and T ∧γν ≤ aν
∑

|L|=p TL,L for all ν. It follows
that there exists a uniform constant cp,n > 0 such that

|TI,J | ≤ cp,n
∑
|L|=p

TL,L.

□

Corollary 2.43. Let T be a positive current of bidegree (p, p) and
v a continuous strongly positive (m,m)-form, p+m ≤ n. The current
T ∧ v is positive.

In particular for all continuous positive (1, 1)-forms α1, . . . , αm,

T ∧ α1 ∧ · · · ∧ αm ≥ 0

is a positive current.

4.3. Examples.
4.3.1. Currents of bidegree (1, 1). Let X be a (connected) complex

manifold of dimension n. We let PSH(X) denote the convex cone of
plurisubharmonic functions in X which are not identically −∞.

Proposition 2.44. If u ∈ PSH(X) then the current Tu := ddcu
is a closed positive current of bidegree (1, 1) on X.

Proof. The property is local so we can assume X = Ω is an open
subset of Cn. Assume first that u ∈ PSH(Ω) ∩ C2(Ω). Then

ddcu =
i

π

∑
1≤j,k≤n

∂2u

∂zj∂zk
dzj ∧ ∂zk

is a strongly positive (1, 1)-form since for each z ∈ Ω, ξ ∈ Cn

∑
1≤j,k≤n

∂2u(z)

∂zj∂zk
ξjξk ≥ 0.

To treat the general case we regularize u by using radial mollifiers
and set uε := u ⋆ ρε. This is a smooth plurisubharmonic function in
the open set Ωε := {z ∈ Ω; dist(z; ∂Ω) > ε}. Since uε → u in L1

loc(Ω),
it follows that ddcuε converges to ddcu in the weak sense of currents,
hence ddcu is a positive current in Ω. □
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Conversely one can show that a closed positive current T of bidegree
(1, 1) can be locally written T = ddcu, where u is a (local) plurisub-
harmonic function (see Exercise 2.12). Such a function is called a local
potential of T . Observe that two local potentials differ by a plurihar-
monic function h, i.e. a smooth function such that ddch = 0 in Ω.

4.3.2. Current of integration over a complex analytic set.
Complex submanifolds. Let Z ⊂ X be a complex submanifold of X

of dimension m ≥ 1. Its complex structure induces a natural orienta-
tion on Z, we can thus integrate a smooth test form ψ of top degree
2m on Z. Using a partition of unity we may assume that the support
of Ψ lies in a coordinate chart (D, z). Thus ψ(z) = f(z)βm(z) in D,
where f is a test function in D and by definition∫

D

ψ =

∫
D

f(z1, . . . , zm)
i

2
dz1 ∧ dz1 ∧ . . . ∧

i

2
dzm ∧ dzm.

This formula does not depend on the local coordinates, as follows from
the change of variables formula.

Definition 2.45. We let [Z] denote the current of integration over
Z. It is a positive current of bidimension (m,m) defined by

< [Z], φ >:=

∫
Z

j∗(φ)

for φ ∈ Dm,m(X), where j : Z → X denotes the embedding of Z in X.

If Φ is a strongly positive test form of bidegree (m,m) then j∗(Φ)
is a positive volume form on Z, hence

∫
Z
j∗(Φ) ≥ 0, which shows that

[Z] is a positive current of bidimension (m,m) on X.
If Z if a closed complex submanifold of X (no boundary), Stokes

formula shows that for all Ψ ∈ D2m−1(X),

< d[Z],Ψ >= − < [Z], dψ >= −
∫
Z

j∗(dψ) = −
∫
Z

dj∗(ψ) = 0,

thus [Z] is a closed positive current on X.

Analytic subsets. Let Z be a (closed) complex analytic subset of
X of pure dimension m, 1 ≤ m ≤ n. We refer the reader to [?] for
basics on analytic sets. One can consider the positive current [Z] of
integration over the complex manifold Zreg of regular points of Z i.e.
for any test form Φ of bidegree (n−m,n−m) we set

⟨[Z],Φ⟩ :=
∫
Zreg

j∗Φ,

where j : Z → X is the canonical embedding.
It is not obvious that this integral converges since j∗Φ is not com-

pactly supported in Zreg. This has been proved by Lelong who showed
the following remarkable result:
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Theorem 2.46. The current [Z] is a closed positive current of bide-
gree (m,m) on X.

We refer the reader to [Chir89, Theorem 14.1] for a proof. In
particular if f is a holomorphic function in X which is not identically
0, then its zero locus Z(f) defines a positive closed current on X which
satifies the Poincaré-Lelong equation

ddc log |f | = [Z(f)]

in the sense of currents.

4.4. The trace measure of a positive current. Let X be a
hermitian manifold; for all x ∈ X the complex tangent space TxX is
endowed with a positive definite hermitian scalar product h(x) which
depends smoothly on x. We let ω denote its fundamental (1, 1)-form.

Definition 2.47. Let T ∈ D′
p,p be a positive current of bidegree

(p, p), 1 ≤ p ≤ n. The trace measure of T is

σT :=
1

(n− p)!
T ∧ ωn−p.

In a local coordinates (U, z1, . . . , zn) we can write

h :=
∑
j,k

hj,kdzj ⊗ dzk,

where (hj,k) is a positive definite hermitian matrix with smooth entries
in U . For x ∈ U, the complex cotangent space T ∗

xX can also be endowed
with a natural hermitian scalar product: applying Hilbert-Schmidt or-
thonormalization process to the the basis (dz1(x), . . . , dzn(x)), we con-
struct an orthonormal basis (ζ1(x), . . . , ζn(x)) of T

∗
xX.

Thus (ζ1, . . . , ζn) is a system of smooth differential (1, 0)-forms in
U such that (ζ1(x), . . . , ζn(x)) is an orthonormal basis of T ∗

xX. We
say that (ζ1, . . . , ζn) is a local orthonormal frame (with respect to the
hermitian product h) of the cotangent bundle T ∗(X) over U . Writing

h =
∑

1≤j≤n

ζj ⊗ ζj,

we get

ω =
i

2

∑
1≤j≤n

ζj ∧ ζj

and
ωq

q!
=
iq

2

2q

∑
|K|=q

ζK ∧ ζK .

Fix T ∈ D′+
p,p and set q := n− p. We can decompose T as

T =
∑

|I|=|J |=q

iq
2

TI,JζI ∧ ζJ ,
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where TI,J ∈ D(U) and ζI := ζi1∧ . . .∧ζiq . A simple computation yields

σT =

∑
|I|=q

TI,I

 ∧
1≤j≤n

i

2
ζj ∧ ζj,

i.e. σT =
∑

|I|=q TI,I , identifying currents of top degree and distribu-
tions. We let the reader check that ifX is a domain in Cn equipped with
the standard euclidean metric

∑
1≤j≤n dzj ⊗ dzj and if T ∈ D′

p,p(X),
then

σT =
∑
|I|=q

TI,I .

Proposition 2.42 can now be reformulated as follows:

Corollary 2.48. Let T ∈ D′
p,p(X) be a positive current. If we

decompose T locally, T =
∑

|I|=|J |=p i
p2TI,JdzI ∧dzJ , the total variation

∥T∥ =
∑

|I|=|J |=p |TI,J | of T is dominated by the trace measure σT ,

σT ≤ ∥T∥ ≤ cn,pσT ,

where cn,p is an absolute constant independent of T .
In particular the topology of weak convergence in the sense of dis-

tributions coincides, for positive currents, with the weak convergence in
the sense of Radon measures.

Example 2.49. Let u ∈ PSH(Ω), where Ω ⊂ Cn is a domain. The
trace measure of the closed positive current T := ddcu coincides with
the Riesz measure of u, i.e.

σT := ddcu ∧ βn−1 =
1

2π
∆u

This formula can be generalized to any plurisubharmonic function on
a complex hermitian manifold (X,ω), replacing β by ω and ∆ by ∆ω

the Laplace operator associated to the hermitian metric ω.

5. Exercises

Exercise 2.1. Let φ be a subharmonic function in R2n ≃ Cn,
i.e. an upper semi-continuous function which is locally integrable and
satisfies

∆φ :=
1

4

n∑
i=1

∂2φ

∂zi∂zi
≥ 0

in the sense of distributions. Show that φ is pluri-subharmonic if and
only if for all A ∈ GL(n,C),

φA : z ∈ Cn 7→ φ(A · z) ∈ R

is subharmonic. (see [Hor94])
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Exercise 2.2. Show that a convex function f : R → R which is
bounded from above is constant. Use this to prove that a plurisubhar-
monic function φ : Cn → R which is bounded from above is constant.

Exercise 2.3. Let Ω ⊂ Cn be a domain and φ : Ω → R.
1) Show that φ is pluriharmonic if and only if it is locally the real

part of a holomorphic function.
2) Show that φ is pluharmonic iff φ and −φ are plurisubharmonic

in Ω.
3) Show that if φ is plurisubharmonic in Ω and harmonic in the

real sense then φ is pluriharmonic in Ω.

Exercise 2.4.
1) Let φ : Cn → R be a plurisubharmonic function. Show that

φ|Rn ∈ L1
loc(Rn).

2) Let φj be a sequence of plurisubharmonic functions in Cn such
that φj → φ in L1

loc(Cn). Show that

φj |Rn −→ φ|Rn in L1
loc(Rn).

(See [Hor94]).

Exercise 2.5. What is the limit of φj(z) = j log ||z|| in Cn ? Is it
in contradiction with the compacity criteria we have established ?

Exercise 2.6. Let Ω ⊂ Cn be a domain and F = {u = −∞}
a closed complete pluripolar set (the −∞ locus of a plurisubharmonic
function u). Let φ be a plurisubharmonic function in Ω \ F which is
locally bounded near F . Show that φ uniquely extends through F as a
plurisubharmonic function.

Exercise 2.7. Let Ω ⊂ Cn be a domain and A ⊂ Cn an analytic
subset of complex codimension ≥ 2. Let φ be a plurisubharmonic func-
tion in Ω \ A. Show that φ uniquely extends through A as a plurisub-
harmonic function (see [Chir89] for some help).

Exercise 2.8. Let f : Ω → Ω′ be a proper surjective holomorphic
map between two domains Ω ⊂ Cn, Ω′ ⊂ Ck. Let u be a plurisubhar-
monic function in Ω and set, for z′ ∈ Ω′,

v(z′) := max{u(z) , f(z) = z′}.
Show that v is plurisubharmonic in Ω′.

Exercise 2.9. Let u be a plurisubharmonic function in Cn.

1) Show that for any ball B, supB u = supB u.

2) Generalize 1) to bounded open sets Ω with smooth boundary.

3) Deduce that K = Ω is a regular set: if uj is a sequence of
plurisubharmonic functions which converge to u in L1

loc, then

sup
K
uj → sup

K
u.



5. EXERCISES 69

4) Using the Riemann mapping theorem, show that a connected
compact set K ⊂ C is regular.

Exercise 2.10. Let (uj) ∈ SH(Rk)N be a sequence of subharmonic
functions converging to u in L1

loc. Using the linearity of the Laplace
operator, show that

Duj → Du in Lq
loc for all q < k/(k − 1).

Exercise 2.11. Let Ω ⊂ Cn be a domain. For K ⊂ Ω we let

K̂ := {z ∈ Ω |u(z) ≤ sup
K
u, ∀u ∈ PSH(Ω)}

denote the plurisubharmonic hull of K. Say that Ω is pseudoconvex if
K̂ is relatively compact in Ω whenever K is.

1) Describe K̂ when n = 1 and show that any Ω is pseudoconvex.

2) Show that Ω := {z ∈ Cn | 1 < ||z|| < 2} is not pseudoconvex.

3) Show that Ω is pseudoconvex iff

z ∈ Ω 7→ − log dist(z, ∂Ω) ∈ R
is plurisubharmonic . (See [Hor90]).

Exercise 2.12. Let T a closed positive (1, 1)-current on Ω. Show
that for any ball B ⊂ Ω there exists a plurisubharmonic function ρ in
B such that ddcρB = T weakly on B. The function ρ is called a local
potential of T . Show that local potentials are unique up to addition of
a pluriharmonic function.





CHAPTER 3

The complex Monge-Ampère operator

1. Introduction

Let u is C2-smooth and plurisubharmonic function in an open set
Ω ⊂ Cn. Recall that

ddcu =
i

π

n∑
j,k=1

∂2u

∂zj∂z̄k
dzj ∧ dz̄k

is a smooth semi-positive (1, 1)-form on Ω. This means that the com-
plex Hessian of φ at each point z ∈ Ω is a semi-positive hermit-
ian matrix . A simple computation shows that the wedge product
(ddcu)n := ddcu∧· · ·∧ddcu (n times) is a top degree differential (n, n)-
form on Ω, given by the following formula:

(ddcu)n = det

(
∂2φ

∂zi∂zj

)
βn

where β := ddc|z|2 is (up to a constant) the standard Kähler metric
on Cn and βn is (up to a consatnt) the euclidean volume form on Cn.
Observe that the right hand side is then a continuous non negative
(n, n)−form which we identify to a positive measure with density on
Ω.

The above formula still makes sense almost everywhere in Ω for
plurisubharmonic functions φ which belong to the Sobolev spaceW 2,n

loc (Ω).
The right hand side is then an (n, n)-form on Ω with non negativeL1

loc(Ω)
coefficient, which will be identifed to a positive Borel measure with L1

loc-
density on Ω. It is called the complex Monge-Ampère measure of φ,
sometimes denoted MA(φ). It is however crucial for applications to
consider plurisubharmonic functions which are far less regular.

The complex Monge-Ampère operator is the non linear operator

u 7→ (ddcu)n

which associates, to a given plurisubharmonic function in some class
DMA(Ω) of plurisubharmonic functions in a given domain Ω, a non-
negative Radon measure on Ω, called the Monge-Ampère measure of
u.

Observe that when n := 1, then

ddcu =
∂2u

∂z∂z̄
dz ∧ dz̄ = ∆u

2π
dx ∧ dy,

71
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is the Riesz measure of u and it is well defined for any u ∈ SH(Ω).

In this chapter we explain how to define and study the complex
Monge-Ampère operator acting on plurisubharmonic functions which
are locally bounded following the pioneering work of Bedford and Tay-
lor [BT82]. We show that it is continuous along monotone sequences,
but it is not continuous for the L1

loc-convergence when n ≥ 2.
The terminology comes from the analogy with the real case. For a

C2-smooth convex function u in a convex domains D ⊂ RN , the real
Monge-Ampère operator is defined for functions by the formula:

MAR(u) = det

(
∂2φ

∂xi∂xj

)
wher the right hand is a continuous function in D.

It can be shown that the real Monge-Ampère operator can be ex-
tended to the class of all convex functions in a given convex domain
(see [Gut01]. This is not surprising since convex functions are contin-
uous and even locally Lipschitz in their domain. Moreover, by a deep
theorem of Alexandrof, convex functions are twice differentiable almost
everywhere (see [Ale39]).

In their first seminal work [BT76], E.Bedford and B.A.Taylor were
able to extend the definition of the complex Monge-Ampère operator
to the class of locally bounded plurisubharmonic functions using the
notion of closed positive current.

2. The case of continuous plurisubharmonic functions

Here we show that it is not difficult to extend the complex Monge-
Ampère operator to the class of continuous plurisubharmonic functions
on Ω.

Indeed let u be a continuous psh function in Ω and uj := u ⋆ χj its
regularisation by convolution against a radial approximation of the
Dirac unit mass at the origin. Let us prove that the sequence of
(smooth) measures (ddcuj)

n converges weakly in the sense of distri-
butions on Ω. Since u is continuous, by Dini’s lemma, the sequence
(uj) decreases to u, locally uniformly in Ω.

We need the following fundamental estimate.

Lemma 3.1. Let u1, ·, un be smooth plurisubharmonic functions in
Ω. Then for any compact sets K,E K ⊂ E◦ ⊂ E ⊂ Ω, there exists a
constant C = C(K,L) > 0 such that∫

K

ddcu1 ∧ · · · ∧ ddcun ≤ C∥u1∥E · · · ∥un∥E,

where ∥.∥E is the uniform norm on E.

This estimate can be proved using Stokes formula (see (2.4) below).
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Proposition 3.2. Let u be a continuous plurisubharmonic func-
tion in Ω. Then there exists a unique Radon measure µu on Ω such
that for any decreasing sequence (uj) of smooth plurisubharmonic func-
tions converging to u pointwise in Ω, the sequence of Radon measures
(ddcuj)

n converges to µ weakly on Ω.

Proof. Let us prove the existence. Let (uj) be a the sequence
obtained by convolution with a radial approximation of the Dirac mea-
sure. Each uj is a smooth plurisubharmonic function in a domain Ωj

and the sequence of domains Ωj increases to Ω. Since the sequence
(uj) is locally uniformly bounded in Ω, it follows from Lemma 3.1 that
the sequence of measures (ddcuj)

n has locally uniformly bounded mass
on Ω. Therefore it is enough to prove the weak convergence of the
sequence of distributions (ddcuj)

n against any smooth test function in
D(Ω).

This will be a consequence of the following observation. The prob-
lem of convergence being local, it is enough to consider a test function
with compact support in a small ball B ⋐ Ω. Fix such a smooth test
function χ with compact support in B. Then for any C2−smooth psh
functions φ and ψ in Ω, we have by Stokes formula,∫

B

χ((ddcφ)n − (ddcψ)n) =

∫
B

(φ− ψ)ddcχ ∧ T,

where T :=
∑n−1

j=0 (dd
cφ)n−1−j ∧ (ddcψ)j) is a closed positive current on

Ω. Since χ is smooth of compact support, it is possible to write it as
χ = w1 −w2, where w1, w2 are smooth psh functions in Ω. Take w1 :=
A|z|2 + χ, where A > 0 is big enough so that w1 is plsurisubharmonic
in Ω, and w2 := A|z|2.

Then if we set w := w1 + w2, we obtain

(2.1)

∣∣∣∣∫
B

χ ((ddcφ)n − (ddcψ)n)

∣∣∣∣ ≤ ∫
B

|φ− ψ|ddcw ∧ T.

Therefore if D is an open neighborhood of B such that B ⋐ D ⋐
Ω, then by Chern-Levine-Nirenberg inequality, there exists a uniform
constant C > 0, depending only onD,Ω, a uniform bound of the second
derivatives of χ such that∣∣∣∣∫

B

χ ((ddcφ)n − (ddcψ)n)

∣∣∣∣ ≤ CM(φ, ψ)∥φ− ψ∥D̄,(2.2)

where

M(φ, ψ) :=
n−1∑
j=0

∥φ∥j
D̄
∥ψ∥n−1−j

D̄
.

Now by Dini’s lemma, (uj) convergences uniformly to u on D̄. Since
the sequence (uj) is uniformly bounded in D̄, It follows from (2.4) that
the sequence of measures (ddcuj)

nfor j > jD is a Cauchy sequence of
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Radon measures on D. Then it converges to a positive Radon measure
on D. It is easy to see that taking an exhaution of Ω by an increasing
sequence of domains Dj, all the measures µDj

(u) glue into a unique
measure on Ω, denoted by µ.

To prove uniqueness, we use again (2.4) to see that the limit does
not depend on the approximating sequence (uj) which converges to u
locally uniformly in Ω. This limit µ(u) is defined to be the Monge-
Ampère measure of u on Ω. It is denoted by ((ddcu)n and called the
complex Monge-Ampère measure of u. □

It turns out that the hypothesis of continuity on the psh function u
is a strong condition. Indeed it is not preserved by standard construc-
tions as upper envelopes, regularized limsup of psh functions which
arise naturally when dealing with the Dirichlet problem for the com-
plex Monge-Ampère operator. Therefore it is desirable to define the
complex Monge-Ampère operator for non continuous psh functions, say
e.g. for bounded psh functions.

Remark 3.3. As one may see from the previous reasoning, it is
not clear how to define the complex Monge-Ampère measure of u by
approximating u by a decreasing sequence of smooth psh functions, since
the convergence in not locally uniform anymore. However by (2.4), we
have ∣∣∣∣∫

B

χ ((ddcuj)
n − (ddcuk)

n)

∣∣∣∣ ≤ ∫
B

|uj − uk|dµj,k,(2.3)

where

µj,k := ddcw ∧
n−1∑
j=0

(ddcφ)n−1−j ∧ (ddcψ)j).

By Lusin Theorem, the function u is µ-almost continuous in Ω for
any Borel measure µ on Ω. This means that for any ε > there exists a
compact subset E ⊂ D such that µ(/D\E) < ε and u | E is continuous.

We want to apply this observation to each measure µj,k, but then
the compact set E may depend on j, k and the argument above do not
work anymore. However we will show that

Claim: For any ε > 0, there exits a compact subset E ⊂ Ω such
that supj,k µ(D ⊂ E) < ε and u | E is continuous.

This is one of the main results in pluripotential theory says that
plurisubharmonic functions are actually quasi-continuous ([BT82]).
This will be proved in section 5.2. and then if u is a bounded psh
function in Ω, the convergence of the approximating sequence (uj) to u
is locally quasi-uniform in Ω.

Let us prove assuming the claim that the sequence of measures
(ddcuj) converges weakly to (ddcu)n. Indeed let ε >, then the sequence
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(uj) converges uniformly on E. By (2.3), we have for any j, k∣∣∣∣∫
B

χ ((ddcuj)
n − (ddcuk)

n)

∣∣∣∣(2.4)

≤
∫
B∩E

dµj,k +

∫
B\E

|uj − uk|dµj,k(2.5)

≤ ∥uj − uk∥Eµj,k(B) + 2M sup
j,k

µ(D \ E)(2.6)

≤ Mn∥uj − uk∥E + 2Mε,(2.7)

where M > 0 is a uniform bound of uj on D̄.
This proves the weak convergence of the Radon measures. .
It turns out that proving quasi-continuity is quite involved and we

need anyway to define the complex Monge-Ampère operator in another
way (see [BT82]).

Actually to pass from continuous to bounded psh functions is one
of the main difficulties when dealing with the complex Monge-Ampère
operator in contrast to the real Monge-Ampère operator which deals
with convex functions which are continuous.

The main observation is the following. Let T be a closed positive
current of bidegree (k, k) (1 ≤ k ≤ n − 1) and u a locally bounded
plurisubharmonic function in Ω. It is well known that T can be ex-
tended as a differential form with complex Borel measure coefficients
on Ω. Then the current uT is well defined by duality, since u is a
locally bounded Borel function and hence locally integrable with re-
spect to all the coefficients of T . Therefore we can define the current
ddc(uT ) in the weak sense. Now the following simple observation is
crucial: the current ddc(uT ) is again a closed positive current on Ω.
Indeed, since the problem is local we can assume that the regularizing
sequence uj ↘ u in Ω. Then ujT ⇀ uT in the weak sense of measures
in Ω and by continuity of the operator ddc for the weak topology, we
conclude that ddc(ujT ) ⇀ ddc(uT ) weakly in the sense of currents in
Ω. Now since uj is smooth, we have by Stokes formula for currents that
ddc(ujT ) = ddcuj ∧ T is a positive closed currents. Therefore ddc(uT )
is also a closed positive current in Ω, which will be denoted by ddcu∧T
(see [?]).

It is now clear that we can repeat this construction: if u1, · · · , uk
are locally bounded psh functions, it is possible to define by induction
the current ddcu1 ∧ · · · ∧ ddcuk by the formula

ddcu1 ∧ · · · ∧ ddcuk := ddc(u1dd
cu2 ∧ · · · ∧ ddcuk),

weakly in the sense of currents in Ω, the resulting current being a closed
positive current in Ω.

In particular if u is a locally bounded psh function in Ω, then the
current of bidegree (n, n) given by (ddcu)n = ddcu1∧· · ·∧ddcun, where



76 3. THE COMPLEX MONGE-AMPÈRE OPERATOR

u1 = · · · = un = u can be identified to a positive Borel measure denoted
by (ddcu)n called the Monge-Ampère measure of u.

Likely this definition coincides with the previous one when u is a
continuous psh function. Using ingenious integration by parts and local
approximations, Bedford and Taylor proved the following important
convergence theorem ([BT76]).

Theorem 3.4. Let (uj) and (vj) be decreasing sequences of locally
bounded psh functions in Ω converging to locally bounded psh functions
u and v respectively in Ω. Then the sequence of measures uj(dd

cvj)
n

converges to the measure u(ddcv)n weakly in the sense of measures in Ω.
The same weak convergence still holds if (uj) or (vj) increases almost
everywhere in Ω to u or v respectively.

2.1. Currents of Monge-Ampère type.

2.2. Definitions. Let T be a closed positive (p, p)-current in a
domain Ω ⊂ Cn, 0 ≤ p ≤ n− 1. It can be decomposed as

T = ip
2

∑
|I|=p,|J |=p

TI,JdzI ∧ dzJ ,

where the coefficients TI,J are complex Borel measures.
A locally bounded Borel function u is locally integrable with respect

to the coefficients of T hence uT is a well defined current of order 0,
setting

< uT,Ψ >=< T, uΨ >,

Ψ a continuous form of bidegree (n− p, n− p) with compact support.

If u is a smooth function the current ddcu ∧ T is a (p + 1, p + 1)-
current in Ω defined by

< ddcu ∧ T,Ψ >:=< T, ddcu ∧Ψ >

for Ψ ∈ Dq,q(Ω), q = n− p− 1. Observe that Θ = dcu ∧Ψ− udcΨ is a
smooth form with compact support such that ddcu∧Ψ−uddcΨ = dΘ.
Since dT = 0 we infer

< T, ddcu ∧Ψ > = < T, uddcΨ > + < T, dΘ >

= < T, uddcΨ >=< ddc(uT ),Ψ > .

This motivates the following:

Definition 3.5. Let T be a closed positive current of bidegree (p, p)
in a domain Ω ⊂ Cn and u ∈ PSH(Ω)∩L∞

loc(Ω). The current ddcu∧T
is a (p+ 1, p+ 1)-current defined by

ddcu ∧ T := ddc(uT ),

i.e.
< ddcu ∧ T,Ψ >=< uT, ddcΨ >,

for all test forms Ψ of bidegree (q, q), q := n− p− 1.
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We also need to consider currents of the type du ∧ dcu ∧ T , where
u ∈ PSH(Ω)∩L∞

loc(Ω). Recall that du is locally in Lp
loc(Ω) (with respect

to the Lebesgue measure) for any p < 2. When u is locally bounded
du actually belongs to L2

loc(Ω) as we now explain.
Since u is (locally) bounded from below, we can add a large constant

and assume that u ≥ 0. It follows that u2 is plurisubharmonic hence
ddcu2 ∧ T is a well defined closed positive current if u is smooth, with

ddcu2 = 2uddcu+ 2du ∧ dcu.
This motivates the following:

Definition 3.6. Let u ∈ PSH(Ω) ∩ L∞(Ω). We set

du ∧ dcu ∧ T :=
1

2
ddc(u−m)2 ∧ T − (u−m)ddcu ∧ T,

where m is a lower bound for u in Ω.

This is a well defined closed current in Ω which does not depend on
m (note that du = d(u−m)). These currents (a priori of order 2) are
of order zero, as they are positive:

Proposition 3.7. Let (uj) be locally bounded plurisubharmonic
functions in Ω which decrease to u ∈ PSH(Ω) ∩ L∞

loc. Then

ddcuj ∧ T → ddcu ∧ T, duj ∧ dcuj ∧ T → du ∧ dcu ∧ T,

in the weak sense of currents on Ω.
In particular ddcu ∧ T and du ∧ dcu ∧ T are apositive currents on

Ω, hence their coefficients extend as complex Borel measures on Ω.

Proof. By definition ddcu ∧ T = ddc(uT ) is a closed current. By
assumption the sequence (uj) converges in L

1
loc(Ω, σT ) hence ujT → uT

in the weak sense of currents in Ω. The operator ddc is continuous for
the weak convergence of currents hence ddcuj ∧ T → ddcu ∧ T in the
sense of currents in Ω.

The second statement follows from the first one and the fact that
ujdd

cuj ∧ T converges to uddcu ∧ T . This latter convergence relies
on several technical results that we establish below: it follows from
Chern-Levine-Nirenberg inequalities (Theorem 3.13) that the currents
ujdd

cuj ∧ T have uniformly bounded masses. We can thus consider a
cluster point σ. The reader will check in Exercise 3.1 that

σ ≤ uddcu ∧ T,

since (uj) is decreasing and ddcuj∧T → ddcu∧T . To prove the reverse
inequality we can use the localization principle (Proposition 3.10) to
insure that uj and u coincide near the boundary of Ω and then use
Proposition 3.11 to show that the currents σ and uddcu ∧ T have the
same total mass.
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It remains to prove the positivity property. Since this is a local
property we can reduce to the case where u is plurisubharmonic in a
neighborhood of Ω and 0 ≤ u ≤M on Ω.We can then approximate u by
a decreasing family of smooth plurisubharmonic functions, uε := u⋆ρε,
using standard mollifiers.

We know that ddcuε∧T → ddcu∧T and duε∧dcuε∧T → du∧dcu∧T
in the sense of currents in Ω. Since ddcuε is a positive form of bidegree
(1, 1), we infer that ddcuε ∧ T and duε ∧ dcuε ∧ T are positive currents
in Ω, hence so are their limits. □

Iterating this process we define by induction the intersection of
currents of the above type.

Definition 3.8. If u1, . . . , uk ∈ PSH(X) ∩ L∞
loc(X), and T is a

closed positive current of bidimension (m,m), we define the current
ddcu1 ∧ . . . ∧ ddcuk ∧ T by

ddcu1 ∧ . . . ∧ ddcuk ∧ T := ddc (u1dd
cu2 ∧ . . . ∧ ddcuk ∧ T ) .

We define similarly du1 ∧ dcu1 ∧ . . . ∧ duk ∧ dcuk ∧ T.

It turns out that these definitions are symmetric in the u′js, as we
shall soon show.

In particular if V ∈ PSH(Ω) and u1, . . . , uk ∈ PSH(Ω) ∩ L∞
loc(Ω),

the current ddcu1 ∧ . . . ∧ ddcuk ∧ ddcV is a well defined closed positive
current on Ω.

Definition 3.9. The complex Monge-Ampère measure of a locally
bounded plurisubharmonic function is

(ddcu)n := ddcu ∧ · · · ∧ ddcu.

It remains to make sure that this is a good definition as in the
continuous case.

2.3. Localization principle. A technical point that we are going
to use on several occasions is that we can arbitrarily modify a bounded
plurisubharmonic function near the boundary of a pseudoconvex do-
main without changing it on a given compact subset.

Fix Ω = {ρ < 0} ⋐ Cn a bounded strictly pseudoconvex domain,
with ρ smooth and strictly plurisubharmonic in a neighborhood of Ω.

Proposition 3.10. Fix K ⊂ Ω a compact set and M > 0. There
exists C > 0 depending only on K and Ω, a compact subset E ⊂ Ω
such that K ⊂ E◦ and for any u ∈ PSH(Ω) ∩ L∞(Ω) with u < 0 in
Ω, there exists A > 0 and a bounded plurisubharmonic function ũ in a
neighborhood of Ω̄ such that

(i) ũ = u in a neighborhood of K,
(ii) ũ = Aρ in Ω \ E, with A ≤ C ∥u∥L∞(Ω),
(iii) u ≤ ũ ≤ Aρ on Ω.

In particular ∥ũ∥L∞(D) ≤ C ∥u∥L∞(Ω).
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Proof. Consider, for c > 0, Dc = {z ∈ Ω; ρ(z) < −c}, and choose
a > 0 such that K ⊂ Da. Set M := ∥u∥L∞(Ω) and A :=M/a so that

u ≥ Aρ on ∂Da.

Pick b > 0 so small so that a < b and Aρ ≥ u on ∂Db. The gluing
lemma for plurisubharmonic functions shows that the function

ũ(z) =

 u(z) for z ∈ Da,
max{u(z), Aρ(z)} for z ∈ Db \Da,

Aρ(z) for z ∈ Ω \Db,

is plurisubharmonic in Ω and satisfies all our requirements with E :=
Db and C := max{maxΩ̄ |ρ|/a, 1}. □

We now establish an integration by parts formula due to U. Cegrell
[Ceg04]:

Proposition 3.11. Let T be a closed positive current of bidimen-
sion (1, 1) in Ω. Let u, v ∈ PSH(Ω) ∩ L∞

loc(Ω) be such that u, v ≤ 0,
limz→∂Ω u(z) = 0 and

∫
Ω
ddcv ∧ T < +∞. Then∫

Ω

vddcu ∧ T ≤
∫
Ω

uddcv ∧ T,

where the inequality holds in [−∞, 0[. If limz→∂Ω v(z) = 0, then

(2.8)

∫
Ω

vddcu ∧ T =

∫
Ω

uddcv ∧ T,

provided that
∫
Ω
ddcu ∧ T < +∞.

Proof. For ε > 0 set uε := sup{u,−ε} and observe that uε is
plurisubharmonic in Ω and increases to 0 as ε decreases to 0. The
monotone convergence theorem yields∫

Ω

uddcv ∧ T = lim
ε→0

∫
Ω

(u− uε)dd
cv ∧ T.

Set Ωε := {u < −ε}. Then K := Ωε ⊂ Ω is a compact subset such
that uε = u on Ω \K. Let D1 ⋐ Ω be a domain close to Ω such that
K ⊂ D1. Let (ρη)η>0 be standard mollifiers. For η > 0 small enough,
the smooth function (u − uε) ⋆ ρη has compact support contained in
the η−neighborhood Kη ⊂ Ω of K and converges to u− uε on Ω as η
decreases to 0. It follows from Lebesgue’s convergence theorem that∫

D1

(u− uε)dd
cv ∧ T = lim

η→0

∫
D1

(u− uε) ⋆ ρηdd
cv ∧ T.

Since (u−uε) ⋆ ρη is smooth and has a compact support in D1 we infer∫
D1

(u−uε)⋆ρηddcv∧T =

∫
D1

vddc((u−uε)⋆ρη)∧T ≥
∫
D1

vddc(u⋆ρη)∧T.
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Assume first that v is continuous in a neighborhood of D̄1 and
observe that we can choose D1 so that the positive Borel measure
(−v)ddcu ∧ T has no mass on ∂D1. Thus

(−v)ddc(u ⋆ ρη) ∧ T → (−v)ddcu ∧ T
weakly in the sense of Radon measures in Ω. Therefore

lim
η→0

∫
D1

v ddc(u ⋆ ρη) ∧ T =

∫
D1

v ddcu ∧ T.

We infer

(2.9)

∫
D1

u ddcv ∧ T ≥
∫
D1

v ddcu ∧ T − ε

∫
D1

ddcv ∧ T.

If v is not lower semi-continuous we take a decreasing sequence
(vj) of negative continuous plurisubharmonic functions in Ω which con-
verges to v in a neighborhood of D1 and apply the last inequality to
each function vj. Choose a domain D2 such that D2 ⋐ D1 ⋐ Ω. By
upper semi-continuity on the compact set L := D2 ⊂ D1, it follows
from (2.9) that∫

L

uddcv ∧ T ≥ lim sup
j

∫
L

uddcvj ∧ T

≥ lim
j

∫
D1

vjdd
cu ∧ T − ε lim inf

j

∫
D1

ddcvj ∧ T

≥
∫
D1

vddcu ∧ T − ε

∫
D̄1

ddcv ∧ T.

Letting D1 and D2 increase to Ω and taking the limit as ε → 0, we
obtain the required inequality provided that

∫
Ω
ddcv ∧ T < +∞. □

Simple examples show that the total mass of the current ddcu ∧ T
in Ω need not be finite:

Example 3.12. Fix 0 < α < 1 and consider

z ∈ D 7→ u(z) := −(1− |z|2)α ∈ R
This is a smooth and bounded subharmonic function in the unit disc D,
which extends as a Hölder continuous function up to the boundary. The
reader can check (Exercise 3.3) that the total mass of ∆u is infinite,∫

D
ddcu = +∞.

3. The complex Monge-Ampère measure

3.1. Chern-Levine-Nirenberg inequalities. The following in-
equalities are due to Chern-Levine-Nirenberg [CLN69]. They are the
first step towards defining the complex Monge-Ampère operator on
bounded plurisubharmonic functions:
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Theorem 3.13. Let T be a closed positive current of bidimension
(k, k) in Ω and u1, . . . , uk ∈ PSH(Ω) ∩ L∞

loc(Ω). Then for all open
subsets Ω1 ⋐ Ω2 ⋐ Ω, there exists a constant C = CΩ1,Ω2 > 0 such that
for any compact subsets K ⊂ Ω1

(3.1)

∫
Ω1

ddcu1 ∧ . . . ∧ ddcuk ∧ T ≤ C∥u1∥E . . . ∥uk∥E∥T∥E,

and

(3.2)

∫
Ω1

du1∧dcu1∧ddcu2∧. . .∧ddcuk∧T ≤ C∥u1∥2E∥u2∥E . . . ∥uk∥E∥T∥E ,

where E := (Ω2 \ Ω1) ∩ Supp(T ).

Here (and in the sequel) we let ∥u∥E denote the L∞-norm of the
function u on the Borel set E.

Proof. It is enough to prove inequality (3.1) for k = 1 and then
use induction on k. Set u = u1. We can always assume that u ≤ 0
on Ω2, since the function v := u − supΩ2\Ω1

u is negative on Ω2 and
satisfies ddcv = ddcu and ∥v∥Ω2\Ω1 ≤ 2∥u∥Ω2\Ω1 .

Let χ ∈ D(Ω2) be a non-negative test function with χ = 1 in Ω1.
Then ∫

Ω1

T ∧ ddcu ≤
∫
Ω2

χT ∧ ddcu.

Since ddcχ = 0 in Ω1 we obtain∫
Ω2

χddcu ∧ T =

∫
Ω2

uddcχ ∧ T =

∫
Ω2\Ω1

uddcχ ∧ T.

Fixing A > 0 such that ddcχ ≥ −Aβ on Ω we infer∫
Ω2

χddcu ∧ T ≤ A∥u∥Ω2\Ω1

∫
Ω2\Ω1

T ∧ β.

We now prove the second inequality (3.2). We can assume without
loss of generality that u := u1 ≥ 0 in Ω2. Then u

2 is plurisubharmonic
and

ddcu2 = 2uddcu+ 2du ∧ dcu,
in the sense of currents in Ω2. Thus (3.2) follows from (3.1) applied
with u1 replaced bu u21,∫

Ω1

du1 ∧ dcu1 ∧ ddcu2 ∧ . . . ∧ ddcuk ∧ T ≤ C∥u1∥2E . . . ∥uk∥E∥T∥E.

□
Corollary 3.14. For all subdomains Ω1 ⋐ Ω2 ⋐ Ω, there exists a

constant C = CΩ1,Ω2 > 0 such that if V ∈ PSH(Ω), and u1, . . . , uk ∈
PSH(Ω) ∩ L∞

loc(Ω), then

(3.3)

∫
Ω1

ddcu1∧ . . .∧ddcuk∧ddcV ∧βq ≤ C∥u1∥E . . . ∥uk∥E∥V ∥L1(E),
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where E := Ω2 \ Ω1 and q = n− (k + 1).

Proof. It suffices to find an upper bound for the mass of the cur-
rent T = ddcV ∧ βn−1 on Ω1 and apply previous inequalities.

We use the same notations as in the previous proof and assume first
that V < 0 in Ω2. Then∫

Ω1

ddcV ∧ βn−1 ≤
∫
Ω2

χddcV ∧ βn−1 =

∫
Ω2

V ddcχ ∧ βn−1.

Since ddcχ ∧ βn−1 = ∆χβn, it follows that∫
K

ddcV ∧ βn−1 ≤ ∥∆χ∥Ω2\Ω1

∫
Ω2\Ω1

|V |βn.

which proves the required inequality.
We now treat the the general case. The submean-value inequality

insures that we can find an open set Ω′ such that Ω1 ⋐ Ω′ ⋐ Ω2 and
a constant C > 0 such that maxΩ̄′ V ≤ C

∫
Ω2\Ω1

V+ βn. We can now

apply the last inequality to V − supΩ′ V in Ω′ and obtain the required
estimate. □

3.2. Symmetry of Monge-Ampère operators.

Proposition 3.15. Let T be a closed positive current on Ω of bidi-
mension (m,m). Let (uj) be bounded plurisubharmonic functions in
Ω which decrease to u ∈ PSH(Ω) ∩ L∞

loc. Then for any continuous
plurisubharmonic function h on Ω,

hddcuj ∧ T → hddcu ∧ T

and

ddch ∧ ddcuj ∧ T → ddch ∧ ddcu ∧ T
in the weak sense of Radon measures on Ω.

Proof. We already know that ddcuj ∧ T → ddcu ∧ T in the weak
sense of currents by Proposition 3.7.

The Chern-Levine-Nirenberg inequalities insure that the currents
ddcuj ∧T have locally uniformly bounded masses in Ω, hence the weak
convergence holds in the sense of Radon measures on Ω. Thus

hddcuj ∧ T → hddcu ∧ T

in the weak sense of Radon measures.
Since the operator ddc is continuous for the weak convergence of

currents, it follows that ddch∧ddcuj∧T → ddch∧ddcu∧T in the sense
of currents in Ω.

Now these are positive currents (h is plurisubharmonic ) hence the
convergence actually holds in the sense of Radon measures. □

This shows that these operators are symmetric:
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Corollary 3.16. Let T (resp. S) be a positive closed current of
bidimension (2, 2) (resp. (k, k)) and u, v be locally bounded plurisub-
harmonic functions in a domain Ω ⊂ Cn. Then

ddcu ∧ ddcv ∧ T = ddcv ∧ ddcu ∧ T.

More generally the Monge-Ampère type operator

(u1, . . . , uk) ∈ PSH(Ω) ∩ L∞
loc(Ω) 7−→ ddcu1 ∧ . . . ∧ ddcuk ∧ S

is symmetric.

Proof. The formula is clear when both functions are smooth. As-
sume now that u is smooth and take a sequence of smooth psh functions
vj which locally decrease to u. Then

ddcu ∧ ddcvj ∧ T = ddcvj ∧ ddcu ∧ T

hence the previous convergence result yields the required identity.

We now treat the general case. Since the property is local we can
use the localization principle and assume that u, v are negative in a
ball B ⋐ Ω and equal to 0 on ∂B. Let ρ be a strictly plurisubharmonic
defining function of B. It follows from Proposition 3.11 that∫

B
ρddcu ∧ ddcv ∧ T =

∫
B
uddcρ ∧ ddcv ∧ T.

As ρ is smooth, the first part of the proof yields ddcρ ∧ ddcv ∧ T =
ddcv ∧ ddcρ ∧ T in the sense of currents. Thus∫

B
ρddcu ∧ ddcv ∧ T =

∫
B
uddcv ∧ ddcρ ∧ T.

Using again the formula (2.8) and the fact that ddcρ ∧ ddcu ∧ T =
ddcu ∧ ddcρ ∧ T , we get∫

B
ρddcu ∧ ddcv ∧ T =

∫
B
vddcu ∧ ddcρ ∧ T

=

∫
B
vddcρ ∧ ddcu ∧ T

=

∫
B
ρddcv ∧ ddcu ∧ T.

Observe finally that any smooth test function χ with compact sup-
port in B can be written as the difference of two defining functions for
B. Indeed Addcρ > −ddcχ for A > 1 large enough, thus χ = ρ1 − ρ2,
where ρ1 := χ+ Aρ and ρ2 := Aρ. □

Here is a first example of an explicit non-smooth complex Monge-
Ampère measure:
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Example 3.17. Fix r > 0. The function

ur(z) := log+(|z|/r) = max{log |z|; log r} − log r

is a continuous plurisubharmonic function in Cn which is smooth in
Cn \ {|z| = r} where it satisfies (ddcu)n = 0.

The Borel measure (ddcur)
n is invariant under unitary transforma-

tions and has total mass 1 in Cn (see Proposition 3.52). It coincides
with the normalized Lebesgue measure σr on the sphere |z| = r.

3.3. Integrability with respect to Monge-Ampère measures.

Theorem 3.18. Fix V ∈ PSH(Ω) and u1, . . . , un ∈ PSH(Ω) ∩
L∞
loc(Ω). For any subdomain D ⋐ Ω and any compact subset K ⊂ D,

there exists a constant C = C(K,D) > 0 such that∫
K

|V |ddcu1 ∧ . . . ∧ ddcun ≤ C∥u1∥D . . . ∥un∥D∥V ∥L1(D).

In particular the Monge-Ampère measure ddcu1 ∧ . . . ∧ ddcun does
not charge the polar set P = {V = −∞}.

Proof. Since K is compact, we can cover it by finitely many small
balls. Using the localization principle we can thus assume that there
are euclidean balls such that K ⋐ B1 ⋐ B ⋐ Ω and that uk coincides in
a neighborhood of B \B1 with Akρ. Here ρ denotes a defining function
for the ball B and Ak ≤ C∥uk∥L∞(B) with a uniform constant C.

We first assume that V < 0 on B and set Vj := sup{V, jρ}, for
j ∈ N. The (Vj)’s are bounded plurisubharmonic functions on B with
boundary values 0 which converge to V. It follows from Proposition
3.11 that∫

K

(−Vj) ∧1≤k≤n dd
cuk ≤

∫
B
(−Vj) ∧1≤k≤n dd

cuk

=

∫
B
(−u1)ddcVj ∧ ddcu2 . . . ∧ ddcun.

The Chern-Levine-Nirenberg inequalities (3.1) yield∫
K

(−u1)ddcVj ∧ ddcu2 . . . ∧ ddcun ≤ Cn Π1≤k≤n∥uk∥B
∫
B
|Vj|dλ,

where Cn > 0 is a uniform constant.
On the other hand the formula (2.8) yields, setting A = A1 · · ·An,∫
B\B1

(−u1)ddcVj ∧ ddcu2 . . . ∧ ddcun = A

∫
B\B1

(−ρ)ddcVj ∧ βn−1

= A

∫
B
(−Vj)ddcρ ∧ βn−1

≤ A

∫
B
(−Vj)βn.
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Altogether this yields∫
K

(−Vj)ddcu1 ∧ . . . ∧ ddcun ≤ (C + A)

∫
B
(−Vj)βn.

Since (Vj) decreases to V ∈ L1(B), the monotone convergence theorem
implies∫

K

(−V )ddcu1 ∧ . . . ∧ ddcun ≤ (C + A)

∫
B
(−V )βn < +∞.

We can finally replace V by V ′ := V − supB V , note that ddcV =
ddcV ′, and use the submean value inequality to obtain

∥V ′∥L1(B) ≤ C0∥V ∥L1(B2)

where B ⋐ B2 ⋐ Ω. This proves the required estimate. □

3.4. Compact singularities. The estimates (3.1) and (3.2) only
require a control on the functions near the boundary of Ω. We can thus
improve the last estimate as follows:

Proposition 3.19. Let T be a closed positive current of bidimen-
sion (p, p) and φ ∈ PSH(Ω). Assume there exists a compact set E
and a strictly pseudoconvex domain D such that E ⊂ D ⊂ Ω and a
constant M > 0 such that −M ≤ φ ≤ 0 on Ω \E. Then there exists a
constant C > 0 which does not depend on φ and M such that∫

D

|φ|T ∧ βp ≤ CM

∫
D\E

T ∧ βp.

In particular

ddcφ ∧ T := ddc(φT ),

is a well defined closed positive current in Ω.

Proof. Let ρ be a defining function for D which is stricly plurisub-
harmonic in a neighborhood of D̄. We can assume that β ≤ ddcρ on
D. Set φj := max{φ,−j} and observe that φj is plurisubharmonic,
bounded on D and φj = φ on D \ E for j > M . It follows from
Proposition 3.11 that∫

D

(−φj)T ∧ βp ≤
∫
D

(−φj)dd
cρ ∧ T ∧ βp−1

=

∫
D

(−ρ)ddcφj ∧ T ∧ βp−1

≤ sup
D

(−ρ)
∫
D

ddcφj ∧ T ∧ βp−1.

Since φj = φ on Ω \ D for j ≥ M , Chern-Levine-Nirenberg in-
equalities show that the last integral is bounded from above by C1 ·M .
Letting j → ∞ yields the required estimate. □
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Corollary 3.20. The Monge-Ampère measure

ddcφ1 ∧ · · · ∧ ddcφn

is well defined for all plurisubharmonic functions which are locally
bounded near the boundary of Ω.

Such plurisubharmonic functions are called psh functions with com-
pact singularities.

Example 3.21. The function

ℓ(z) := log |z|, z ∈ Cn

is plurisubharmonic in Cn and has an isolated singularity at the origin.
Its Monge-Ampère measure (ddcℓ)n is therefore well defined. The reader
will check in Exercise 3.15 that

(ddcℓ)n = δ0,

is the Dirac mass at the origin, hence ℓ is a fundamental solution of
the Monge-Ampère operator. This latter notion is however of limited
interest as this operator is non-linear when n ≥ 2 and there are very
many fundamental solutions !

4. Continuity of the complex Monge-Ampère operator

When the (complex) dimension is n = 1 the complex Monge-
Ampère operator is nothing but the Laplace operator ddc. It is then a
linear operator which is well defined on all subharmonic functions and
is continuous for the weak (L1

loc) convergence.
The situation is much more delicate in dimension n ≥ 2. The

complex-Monge-Ampère operator is then non linear and can not be
defined for all plurisubharmonic functions. It is moreover discontinous
for the the L1

loc-convergence. We will nevertheless show that it is con-
tinuous for the monotone convergence.

4.1. Continuity along decreasing sequences. We first show
that the complex Monge-Ampère operators is continuous along decreas-
ing sequences of plurisubharmonic functions.

Theorem 3.22. Let T be a closed positive current of bidegree (p, p)
and let (uj0)j∈N, ..., (u

j
q)j∈N be decreasing sequences of plurisubharmonic

functions which converge to u0, ..., uq ∈ PSH(Ω) ∩ L∞
loc(Ω), p+ q ≤ n.

Then

uj0 dd
cuj1 ∧ . . . ∧ ddcujq ∧ T −→ u0 dd

cu1 ∧ . . . ∧ ddcuq ∧ T

in the weak sense of currents.
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Proof. The proof proceeds by induction on q. For q = 0 the
theorem is a consequence of the monotone convergence theorem. Fix
1 ≤ q ≤ n− p and assume that the theorem is true for q − 1 so that

Sj := ∧1≤k≤qdd
cujk ∧ T −→ S := ∧1≤k≤qdd

cuk ∧ T.
It follows from Chern-Levine-Nirenberg inequalities (3.1) that the

sequence (uj0S
j) is relatively compact for the weak topology of currents.

Up to extracting and relabelling, it suffices to show that if the sequence
(uj0S

j) converges weakly to a current Θ then Θ = u0S.
By upper semi-continuity we already know that for all elementary

positive (n− p− q, n− p− q)-form Γ, Θ∧ Γ ≤ u0S ∧ Γ hence u0S −Θ
is a positive current on Ω. It thus remains to prove that∫

Ω

u0S ∧ βn−p−q ≤
∫
Ω

Θ ∧ βn−p−q.

The problem being local, it is enough to prove that the total mass of
the positive current u0S −Θ on each ball B = B(a,R) ⋐ Ω is zero. By
the localization principle we can assume that the functions uj0 coincide
with the function ρ(z) = A(|z − a|2 − R2) in a neighborhood of ∂B,
where A > 1 is a large constant, and that −1 ≤ uj0 < 0 in an open
neighborhood Ω′′ ⋐ Ω. Integrating by parts (using (2.8)), we infer∫

B
u0 ∧1≤i≤q dd

cui ∧ T ∧ βn−p−q ≤
∫
B
uj0 ∧1≤i≤q dd

cui ∧ T ∧ βn−p−q

=

∫
B
u1 ∧ ddcuj0 ∧2≤i≤q dd

cui ∧ T ∧ βn−p−q

≤
∫
B
uj0 ∧1≤i≤q dd

cuji ∧ T ∧ βn−p−q.

We use here the symmetry of the wedge products (see Corollary 3.16).
Since the positive measures (−uj0)∧1≤i≤qdd

cuji∧T∧βn−p−q converge
weakly to −Θ ∧ βn−p−q, it follows from the lower semi-continuity that

lim inf
j→+∞

∫
B
(−uj0) ∧1≤i≤q dd

cuji ∧ ∧T ∧ βn−p−q ≥
∫
B
−Θ ∧ βn−p−q,

which proves the theorem. □
The reader can use decreasing sequence of smooth approximants to

compute the following complex Monge-Ampère measure:

Example 3.23. Consider

ψ : z ∈ Cn 7→ max{log+ |zj|; 1 ≤ j ≤ n} ∈ R.

The function ψ is Lipschitz continuous and plurisubharmonic in
Cn. Its Monge-Ampère measure (ddcψ)n coincides with the normalized
Lebesgue measure τn on the torus

Tn = {z ∈ Cn; |z1| = · · · = |zn| = 1}.
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(See Exercise 3.9).

Corollary 3.24. If u, v are plurisubharmonic and locally bounded,
then

(ddc[u+ v])n =
n∑

j=0

(
n
j

)
(ddcu)j ∧ (ddcv)n−j.

Proof. The formula is clear if u, v are smooth. The general case
follows by approximation by smooth decreasing sequences. □

The following estimates are due to Blocki [Blo93]:

Proposition 3.25. Fix u, v, w ∈ PSH−(Ω) ∩ L∞(Ω) such that
limz→∂Ω(w(z)− v(z)) = 0. Then∫

Ω

(w − v)n+1
+ (ddcu)n ≤ (n+ 1)!Mn+1

∫
Ω

(w − v)+ (ddcv)n,

where M = supΩ u− infΩ u and (w − v)+ := sup{w − v, 0}.

Proof. We can assume without loss of generality that supΩ u = 0.
Observe that for ε > 0 the function wε := sup{v, w − ε} is a bounded
plurisubharmonic function on Ω such that wε ↗ sup{v, w} as ε ↘ 0
and wε = v near ∂Ω. By the the monotone convergence theorem we
may thus assume that w = v near ∂Ω.

Set h := (w − v)+ on Ω and fix a compact set K ⊂ Ω such that
h = 0 in Ω\K. Consider smooth approximants hε := h⋆ρε of h. These
functions are smooth in a neighborhood Ω′′ of K with compact support
in the ε−neighborhood Kε of K. By definition ddcu ∧ T := ddc(uT )
hence ∫

Ω

hpεdd
cu ∧ T =

∫
Ω′′
uddchpε ∧ T.

On the other hand if p ≥ 1,

ddchpε = php−1
ε ddchε + p(p− 1)hp−2

ε dhε ∧ dchε ≥ php−1
ε ddchε,

thus u ddchpε ≤ puhp−1
ε ddchε and∫

Ω′′
hpεdd

cu ∧ T ≤
∫
Ω′′
puhp−1

ε ddchε ∧ T

≤ pM

∫
Ω′′
hp−1
ε (−ddchε) ∧ T

≤ pM

∫
Ω′′
hp−1
ε ddcvε ∧ T.

The last inequality follows from the observation that

h = max{w − v, 0} = max{w, v} − v,

hence −ddchε ≤ ddcvε.
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We can use this argument n+ 1 times and obtain∫
Ω′′
hn+1
ε (ddcu)n ≤ (n+ 1)!Mn+1

∫
Ω′′
hε(dd

cvε)
n.

Since h = sup{w, v} − v, hε = (sup{w, v})ε − vε is the difference of
decreasing sequences of bounded plurisubharmonic functions, we can
use the continuity of the Monge-Ampère operator along decreasing se-
quences and apply Lebesgue’s convergence theorem to obtain∫

Ω′′
hn+1(ddcu)n ≤ (n+ 1)!Mn+1

∫
Ω′′
h(ddcv)n,

which is our claim. □
4.2. Continuity along increasing sequences. In this section

we show that complex Monge-Ampère operators are continuous along
increasing sequences.

To this end we need the following technical result which relies on
the quasicontinuity of plurisubharmonic functions:

Lemma 3.26. Let P be a family of plurisubharmonic functions which
are locally uniformly bounded. Let T denote the set of currents of the
form T :=

∧
1≤i≤p dd

cui, where u1, . . . , un ∈ P.

If (Tj)j∈N is a sequence of currents in T converging weakly to a
current T ∈ T , then for all locally bounded plurisubharmonic function
φ, the currents φTj weakly converge to φT .

The proof of the quasi-continuity will be given in the next section
so we postpone the proof of this Lemma as well.

Theorem 3.27. Let (uj0), . . . , (u
j
q) be sequences of locally bounded

plurisubharmonic functions which increase almost everywhere towards
u0, . . . , uq ∈ PSH(Ω) ∩ L∞

loc(Ω). Then

uj0dd
cuj1 ∧ . . . ∧ ddcujq −→ u0dd

cu1 ∧ . . . ∧ ddcuq
in the weak sense of currents.

Proof. We proceed by induction on q. The case q = 0 follows from
the monotone convergence theorem.

Suppose that the theorem is true for q− 1. By continuity of ddc we
infer that the currents Sj := ddcuj1∧ . . .∧ddcujq converge to the current
S := ddcu1 ∧ . . . ∧ ddcuq.

The Chern-Levine-Nirenberg inequalities insure that the currents
(uj0Sj) form a relatively compact sequence. We need to show it has a
unique limit point. Extracting and relabelling, we need to show that if
uj0Sj → Θ weakly then Θ = u0S on Ω.

The problem is local so it suffices to prove the convergence in a ball
B = B(a; r) ⋐ Ω. We can modify the functions in a neighborhood of
∂B so that they all coincide with ρ(z) = A(|z − a|2 − R2) near ∂B,
A > 1 a uniform constant.
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Note that uj0Sj ≤ u0Sj since (uj0) is increasing. It follows therefore
from the upper semi-continuity that Θ ≤ u0S. We now show that
Θ = u0S by proving that∫

B
Θ ∧ βn−q ≥

∫
B
u0S ∧ βn−q.

Indeed for j ≥ k ≥ 0, the integration by parts formula yields∫
B
uj0Sj ∧ βn−q ≥

∫
B
uk0 ∧1≤i≤q dd

cuji ∧ βn−q.

The induction hypothesis and Lemma 3.26 yield

lim inf
j

∫
B
uj0Sj ∧ βn−q ≥

∫
B
uk0 ∧1≤i≤q dd

cui ∧ βn−q

=

∫
B
u1dd

cuk0 ∧2≤i≤q dd
cui ∧ βn−q.

Applying Lemma 3.26 and Stokes’ theorem again, we get

lim
k

∫
B
u1dd

cuk0 ∧2≤i≤q ddcui ∧ βn−q

=

∫
B
u1dd

cu0 ∧2≤i≤q dd
cui ∧ βn−q

=

∫
B
u0 ∧1≤i≤q dd

cui ∧ βn−q,

hence

lim inf
j→+∞

∫
B
uj0Sj ∧ βn−q ≥

∫
B
u0 ∧1≤i≤q dd

cui ∧ βn−q,

and the proof is complete. □

The following corollary will allow us to show in the next chapter
that ”negligible sets are pluripolar”, answering a celebrated question
of P.Lelong.

Corollary 3.28. Let (Vj) be plurisubharmonic functions increas-
ing almost everywhere to V ∈ PSH(Ω). Then the exceptional set

N := {sup
j
Vj < V }

has measure 0 with respect to all Monge-Ampère measures of the type
ddcu1 ∧ . . . ddcun, where u1, . . . , un ∈ PSH(Ω) ∩ L∞(Ω).

We have already seen (see Theorem 2.22) that

sup
j
Vj(x) = lim supVj(x) = V (x)

for almost every x with respect to Lebesgue measure. This corollary
gives much more precise information.
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Proof. Set Vs := sup{V, s} and Vj,s = sup{Vj, s} and observe that

N ⊂
∪
s∈Q

Ns, where Ns := {sup
j
Vj,s < Vs}.

By the subadditivity property of Borel measures, we can therefore as-
sume that all the functions (Vj) are locally bounded.

SetW := supj Vj. ThenW is a locally bounded Borel function such
that W ≤ V with equality almost everywhere. Again by subadditivity,
it is enough to prove that∫

K∩N
ddcu1 ∧ . . . ddcun = 0,

where K ⊂ Ω is a compact subset. Pick χ a non-negative cutoff func-
tion such that χ ≡ 1 near K. The previous convergence theorem yields∫

Ω

χWddcu1 ∧ . . . ddcun = lim
j

∫
Ω

χVjdd
cu1 ∧ . . . ddcun

=

∫
Ω

χV ddcu1 ∧ . . . ddcun,

which proves the required result since W ≤ V . □

4.3. Discontinuity of the Monge-Ampère operator. We have
proved that the complex Monge-Ampère operator is well defined on the
set PSH(Ω)∩L∞

loc and is continuous under monotone convergence. This
operator is however not continuous under the weaker L1

loc convergence
as was first emphasized by Cegrell [Ceg84]. Here is a simple example:

Example 3.29. The functions

uj(z1, z2) :=
1

2j
log

[
|zj1 + zj2|2 + 1

]
are smooth and plurisubharmonic in C2. They form a locally bounded
sequence which converges in L1

loc(C2) towards

u(z1, z2) = logmax[1, |z1|, |z2|].
Observe that (ddcuj)

2 = 0 while (ddcu)2 is the Lebesgue measure on the
real torus {|z1| = |z2| = 1}.

We leave the details as an Exercise 3.10. Another example is given
in Exercise 3.7. This discontinuity is actually rather common as was
observed by Lelong [Lel83] who showed the following:

Proposition 3.30. Every locally bounded plurisubharmonic func-
tion can be approximated in L1

loc by locally bounded plurisubharmonic
functions with vanishing Monge-Ampère measures.

Such plurisubharmonic functions are natural generalizations of har-
monic functions, they are called maximal plurisubharmonic functions.
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5. Quasi-continuity

We explained how quasi-continuity of a plurisubharmonic functions
u ∈ PSH(Ω) may help to understand the complex Monge-Ampère
measure of a bounded plurisubharmonic function u by approximating
it by a decreasing sequence of smooth plurisubharmonic functions con-
verging to u.

We may ask what kind of convergence (or topology) on PSH(Ω)∩
L∞
loc(Ω) makes the complex Monge-Ampère operator continuous ? This

will be explained in this section.

5.1. The Monge-Ampère capacity. As we saw in Chapter 3,
the polar locus (i.e. the −∞ locus) of a plurisubharmonic function
is a null set of several Borel measures. These small sets cannot be
characterized by a single measure, one has to introduce capacities, a
non-linear generalization of the latter.

Capacities play an important role in Complex Analysis as they al-
low to characterize small sets. There are various capacities, depending
on the problem of study. We introduce here a generalized capacity in
the sense of Choquet, which is invariant under holomorphic isomor-
phisms and whose null sets are pluripolar sets (i.e. sets that are locally
contained in the polar locus of a plurisubharmonic function).

We follow the seminal work of Bedford and Taylor [BT82] (with
subsequent simplifications by Cegrell [Ceg88] and Demailly [Dem91]).

In classical potential theory, the capacity is defined as the maximal
amount of charge supported on a compact set K ⊂ Ω ⊂ Rm so that
the difference of potentials in the condenser (K,Ω) is 1. This definition
can be formalized by setting

Cap(K) := sup{µ(K);µ ∈ Γ(K)},

where Γ(K) is the set of Borel measures that are supported on K and
whose potential Uµ is bounded between 0 and 1 in Ω. Here Uµ denotes
the Green potential of µ, i.e. the (generalized) solution of the Dirichlet
problem ∆u = µ in Ω \K with boundary values u = −1 on ∂K and 0
on ∂Ω.

There is no formula for Uµ in Cn when n ≥ 2, as the corresponding
complex Monge-Ampère operator is non linear. We will nevertheless
mimic the above definition, using the family of bounded plurisubhar-
monic functions with zero boundary values on ∂Ω as potentials.

5.1.1. Definition. Let Ω ⋐ Cn be a bounded hyperconvex domain.
This means that Ω admits a continuous negative plurisubharmonic ex-
haution ρ.

The Monge-Ampère capacity is defined as follows:
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Definition 3.31. For any Borel subset E ⊂ Ω we set

Cap(E; Ω) := sup

{∫
E

(ddcu)n;u ∈ PSH(Ω),−1 ≤ u ≤ 0

}
.

We shall also use the notation CapΩ(E) in the sequel.

It follows from Chern-Levine-Nirenberg inequalities that the capac-
ity of relatively compact subsets E ⋐ Ω is finite, Cap(E; Ω) < +∞.

The real number Cap(E; Ω) is the (inner) Monge-Ampère capacity
of the condenser (E,Ω). Since any Borel measure is inner regular,
it follows that the set function Cap(·; Ω) is inner regular. The outer
Monge-Ampère capacity is then:

Definition 3.32. For a any subset E ⊂ Ω, we set

Cap∗(E,Ω) := inf{Cap(G,Ω), G open, E ⊂ G ⊂ Ω}.
We say that E is capacitable if Cap∗(E,Ω) = Cap(E,Ω) < +∞.

We show hereafter, using Choquet’s Theorem, that all Borel sets
are capacitable. We start by establishing some elementary properties
of this capacity:

Proposition 3.33.
1) If Ω ⊂ B(a,R) ⋐ Cn, then for any Borel subset E ⊂ Ω,

λ2n(E) ≤
(
πR2

2

)n

Cap∗(E; Ω).

2) If E1 ⊂ E2 ⊂ Ω2 ⊂ Ω1, then Cap∗(E1; Ω1) ≤ Cap∗(E2; Ω2).

3) The set function Cap∗(·; Ω) is subadditive, i.e. if (Ej)j∈N is any
sequence of subsets of Ω, then

Cap∗(E; Ω) ≤
∑
j

Cap∗(Ej; Ω).

4) Let Ω′ ⋐ Ω′′ ⊂ Ω ⊂ Cn be open subsets. Then there exists a
constant A = A(Ω,Ω′,Ω′′) > 0 such that for all E ⊂ Ω′,

Cap∗(E; Ω) ≤ Cap(E; Ω′′) ≤ ACap∗(E; Ω).

5) Let f : Ω1 ⊂ Cn −→ Ω2 ⊂ Cn be a proper holomorphic map.
Then for any Borel subset E ⊂ Ω2 we have

Cap(E,Ω2) ≤ Cap(f−1(E),Ω1).

Proof. The function ρ(z) := |z − a|2/R2 − 1 is plurisubharmonic
in Ω and −1 ≤ ρ ≤ 0 in Ω ⊂ B(a,R). By definition we thus get∫

E

(ddcρ)n ≤ Cap(E; Ω),

which proves the first property since ddcρ = (2/πR2)β.
We let the reader check the properties 2,3 and prove property 4.

Fix ρ a plurisubharmonic defining function for Ω and c > 0 such that
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Ω′′ ⊂ Ωc := {ρ < −c}, hence Cap(·,Ω′′) ≥ Cap(·,Ωc). It is sufficient
to prove the inequality for Ωc. Choose A > 1 so that ψ := A(ρ + c)
satisfies ψ ≤ −1 on Ω′. Fix u ∈ PSH(Ωc) with −1 ≤ u ≤ 0 and define

ũ(z) :=

{
max(u(z), ψ(z)) if z ∈ Ωc

ψ(z) if z ∈ Ω \ Ωc

so that ũ is plurisubharmonic on Ω and satisfies ũ = u on Ω′.
The function v := (a+ 1)−1(ũ− a), where a := supΩ ũ, is plurisub-

harmonic in Ω and −1 ≤ v ≤ 0. Thus
∫
E
(ddcv)n ≤ Cap(E; Ω). Since

v = (a+ 1)−1(u− a) in Ω′, we infer∫
E

(ddcu)n ≤ (a+ 1)nCap(E; Ω),

hence Cap(E; Ωc) ≤ (a+ 1)nCap(E; Ω).
We finally prove property 5. Fix u ∈ PSH(Ω2)∩L∞

loc(Ω2). It follows
from Exercise 3.5 in Chapter 3 that f∗(dd

cu◦f)n = (ddcu)n in the sense
of Borel measures in Ω1. Thus if E ⊂ Ω2 is a Borel subset,∫

E

(ddcu)n =

∫
f−1(E)

(ddcu ◦ f)n ≤ Cap(f−1(E),Ω1).

Taking the supremum over all such u yields the required inequality for
the inner capacities. □

5.1.2. Polar sets are null sets. We now show that the polar locus
of a plurisubharmonic function has zero outer capacity.

Proposition 3.34. Let Ω′ ⋐ Ω ⊂ Cn be two open sets and K ⊂
Ω′ a compact set. There exists A = A(K,Ω′) > 0 such that for all
plurisubharmonic functions V ∈ PSH(Ω) and for all s > 0,

(5.1) Cap∗({z ∈ K;V (z) < −s}; Ω) ≤ A

s
∥V ∥L1(Ω′).

In particular the polar locus P := {z ∈ Ω;V (z) = −∞} satisfies

Cap∗(P,Ω) = 0.

Proof. Let u ∈ PSH(Ω) be so that −1 ≤ u ≤ 0. It follows
from the Chern-Levine-Nirenbeg inequalities that there exists A =
A(K,Ω′) > 0 such that∫

K

|V |(ddcu)n ≤ A

∫
Ω′
|V |dλ2n.

We infer∫
{z∈K;V (z)≤−s}

(ddcu)n ≤ 1

s

∫
K

|V |(ddcu)n ≤ A

s

∫
Ω′
|V |dλ2n.

The desired estimate for the inner capacity follows.
Since for any open set D ⋐ Ω, the sublevel sets {z ∈ D;V < −s}

are open sets, it follows that the same inequality holds for the outer
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capacity. The last statement follows from subadditivity of the outer
capacity. □

We will later on show that conversely, if Cap∗(P,Ω) = 0, then P is
(locally) contained in the polar set of a plurisubharmonic function.

5.2. Quasi-continuity of plurisubharmonic functions.

Theorem 3.35. Let V be a plurisubharmonic function in Ω. For
all ε > 0, there exists an open set G ⊂ Ω such that Cap(G,Ω) < ε and
V |(Ω \G) is continuous.

Proof. Let D ⋐ Ω be an open subset. It follows from Proposition
3.34 that Cap(G1,Ω) < ε if s > 1 is large enough, where

G1 := {z ∈ D;V (z) < −s}.

Set v = vs := sup{V,−s}. The function v is plurisubharmonic and
bounded in a neighborhood of D, and v = V in Ω \ G1. Let (vj) a
decreasing sequence of smooth plurisubharmonic functions in a neigh-
borhood Ω′ ⋐ Ω of D which converges to v. We can assume that
vj = v = Aρ in a neighbourhood of ∂Ω′. It follows from Proposi-
tion 3.25 that for all δ > 0,

CapΩ (D ∩ {vj − v > δ}) ≤ (n+ 1)!

δn+1

∫
Ω′
(vj − v)(ddcv)n.

The monotone convergence theorem therefore yields

lim
j

CapΩ (D ∩ {vj − v > δ}) = 0.

Thus for all k ∈ N∗ there exists jk ∈ N large enough so that

CapΩ (D ∩ {vjk − v > 1/k}) ≤ ε2−k.

We can assume that the sequence (jk) is increasing. Set

G2 :=
∪
k≥1

{vjk − v > 1/k} and G := G1 ∪G2.

The sequence (vjk) decreases uniformly to v on the compact set
D \ G2 and CapΩ(G2) ≤ ε, thus the open set G satisfies the required
properties: it has small capacity and V = v is continuous in D \G.

To complete the proof of the theorem we take an exhaustive se-
quence (Dj) of relatively compact domains such that

∪
j Dj = Ω and

apply the first part of the proof to find a sequence (Gj) of open subsets
of Ω such that CapΩ(Gj) ≤ ε2−j and V |(Dj \ Gj) is continuous. We
finally set G :=

∪
j Gj and use the subadditivity of the capacity to

conclude that CapΩ(G) ≤ ε and V |(Ω \G) is continuous. □

The following lemma has been used in Chapter 3:
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Lemma 3.36. Let P be a locally uniformly bounded family of plurisub-
harmonic functions in Ω. Let T be the set of currents of the form
T :=

∧
1≤i≤p dd

cui, where u1, . . . , up ∈ P.

Assume that (Tj)j∈N is a sequence of currents in T converging
weakly to T ∈ T . Then for any locally bounded quasi-continuous func-
tion f in Ω, fTj −→ fT in the weak sense of currents in Ω.

The notion of quasi-continuous function is defined as follows:

Definition 3.37. A Borel function f : Ω −→ R is quasi-continuous
if for all ε > 0 and all compact subsets K ⋐ Ω there exists an open
subset G ⊂ Ω such that Cap(G,Ω) ≤ ε and f |(K \G) is continuous.

It follows from Theorem 3.35 that any plurisubharmonic function is
quasi-continuous. So are the differences of plurisubharmonic functions.

Proof. Let Θ be a positive continuous test form of bidegree (n−
p, n− p) in Ω, K ⊂ Ω its compact support and fix ε > 0 small.

It follows from the quasi-continuity of f that there is an open subset
G ⊂ Ω with Cap(G,Ω) ≤ ε such that f |(K \ G) is continuous. Let g
be a continuous function in Ω with compact support such that g = f
on K \G. Then∫
Ω

f(Tj∧Θ−T ∧Θ) =

∫
Ω

g(Tj∧Θ−T ∧Θ)+

∫
G

(f−g)(Tj∧Θ−T ∧Θ).

Observe that limj→+∞
∫
Ω
g(Tj ∧ Θ − T ∧ Θ) = 0 since Tj weakly

converges towards T . We claim that the second term is O(ε). Indeed,
since |f − g| is bounded by a constant M > 0 on the support of Θ,

|
∫
G

(f − g)(Tj ∧Θ− T ∧Θ)| ≤M

∫
G

(Tj ∧Θ+ T ∧Θ).

Observe that Tj ∧ Θ ≤ C1Tj ∧ βn−p for some C1 > 0, where β =
ddc|z|2. Moreover there exists a uniform constant C2 > 0 such that for
all Borel subsets E ⊂ Ω,∫

E

∧
1≤i≤p

(ddcvi) ∧ βn−p ≤ C2Cap(E,Ω)

as v1, · · · , vp ∈ PSH(Ω) ∩ L∞
loc(Ω) with |vi| ≤ A (see Exercise ??).

Therefore ∫
G

Tj ∧Θ+ T ∧Θ ≤ 2C1C2ε,

and the proof is complete. □

5.3. Convergence in capacity. We have shown that the complex
Monge-Ampère operator is continuous along monotone sequences of
plurisubharmonic functions. We introduce here, following [X96], a
more general notion of convergence which contains the above continuity
properties as a particular case.
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Definition 3.38. A sequence of Borel functions (fj)j≥0 converges
in capacity to a Borel function f in Ω if for all δ > 0 and all compact
subsets K ⊂ Ω,

lim
j→+∞

Cap∗(K ∩ {|fj − f | ≥ δ},Ω)) = 0.

Convergence in capacity implies convergence in L1
loc (but the con-

verse is not true):

Lemma 3.39. Let (fj)j≥0 be sequence of (locally) uniformly bounded
Borel functions which converges in capacity to a Borel function f in Ω.
Then fj → f in L1

loc(Ω).

Proof. Fix K ⊂ Ω a compact set and δ > 0. Since the sequence
(fj)j∈N and f are uniformly bounded in K (by some M > 0), we get∫

K

|fj − f |dλ ≤ 2Mλ(K ∩ {|fj − f | > δ}) + δλ(K).

By Proposition 3.33, the Lebesgue measure λ is dominated by capacity,
hence the first term in the right hand side converges to 0. The claim
follows since δ > 0 is arbitrarily small. □

We note that convergence of monotone sequences of plurisubhar-
monic functions implies convergence in capacity.

Proposition 3.40. Let (Vj)j∈N ⊂ PSH(Ω) be a monotone se-
quence of plurisubharmonic functions which converges almost every-
where to V ∈ PSH(Ω). Then (Vj) converges to V in capacity.

We treat here two rather different settings at once. If (vj) is non
increasing, then vj(x) converges towards v(x) at all points x (see Chap-
ter 2). When (vj) is non decreasing, then w = supj vj is usually not
u.s.c. hence equality w(x) = v(x) does not hold everywhere.

Proof. By subadditivity and monotonicity of the capacity, it is
enough to prove that for any euclidean ball B ⋐ Ω, any compactK ⊂ B
and any δ > 0 we have

lim
j→+∞

Cap∗
B(K ∩ {|Vj − V | ≥ δ}) = 0.

We use here the fact Cap∗
Ω(·) ≤ Cap∗

B(·).
We first reduce to the case where the sequence (Vj) is locally uni-

formly bounded. Indeed fix s ∈ N and define

V s
j := sup{Vj,−s}, V s := sup{V,−s}.

Then

{|Vj − V | ≥ δ} ⊂ {|V s
j − V s| ≥ δ} ∪ {V ≤ −s} ∪ {Vj ≤ −s}

Now by (5.1) we have for any s ≥ 1 and j ≥ 1

Cap∗
B(K ∩ {Vj < −s} ≤ A

s
∥Vj∥L1(B),
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where A > 0 is a constant which does not depend on j. Therefore

CapB
∗(K ∩ {|Vj − V | ≥ δ}) ≤ Cap∗

B(K ∩ {|V s
j − V s| ≥ δ}) + A′

s
,

hence it suffices to treat the case of sequences of plurisubharmonic
functions that are uniformly bounded.

Assume thus that −M ≤ Vj, V ≤ +M in B, for someM > 0. Using
the localization principle (see Chapter 3), we can assume all the Vj’s
are equal in a neighborhood of ∂B.

Fix ε > 0. The quasi-continuity property of plurisubharmonic func-
tions and the subadditivity of the capacity insure that we can find an
open set G ⊂ Ω such that Cap(G,B) ≤ ε and all Vj’s and V are con-
tinuous in B̄ \G. Since the sequence (Vj) is monotone, it follows from
Dini’s lemma that the convergence is uniform on the compact set B̄\G.

Assume first that (Vj)j∈N is a non-decreasing sequence. It follows
from Chebyshev inequality and Proposition 3.25 that

1

(n+ 1)!
CapB(K ∩ {V − Vj ≥ δ})

≤ δ−n−1

∫
B
(V − Vj)(dd

cVj)
n

≤ δ−n−1

∫
B\G

(V − Vj)(dd
cVj)

n + δ−n−1

∫
B∩G

(V − Vj)(dd
cVj)

n

≤ δ−n−1∥Vj − V ∥B̄\G
∫
B
(ddcVj)

n + 2Mδ−n−1

∫
G

(ddcVj)
n,

Now
∫
B(dd

cVj)
n is uniformly bounded by Chern-Levine-Nirenberg

inequalities and
∫
G
(ddcVj)

n ≤ MnCap(G,B) ≤ εMn. The conclusion
follows since limj ∥Vj − V ∥B̄\G = 0.

Assume now that (Vj)j∈N is non-increasing. We proceed as above
to obtain

CapB(K ∩ {Vj − V | ≥ δ},B) ≤ δ−n−1 (n+ 1)!

∫
B
(Vj − V )(ddcV )n.

The conclusion follows from the monotone convergence theorem and
the capacitability of Borel sets (Corollary ??). □

5.4. Continuity of the Monge-Ampère operator. Our aim
in this section is to show that the complex Monge-Ampère operator is
continuous for the convergence in capacity.

Theorem 3.41. Let (fj)j∈N be positive and uniformly bounded quasi-
continuous functions which converge in capacity to a quasi-continuous
function f in Ω. Let (u1j)j∈N, ..., (u

p
j)j∈N be uniformly bounded plurisub-

harmonic functions which converge in capacity in Ω to locally bounded
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plurisubharmonic functions u1, ..., up respectively. Then

fj
∧

1≤j≤p

ddcuij −→ f
∧

1≤j≤p

ddcui

in the weak sense of currents in Ω.

Proof. The proof proceeds by induction. It follows from Lemma
3.39 that fj (resp. uj) converges in L1

loc(Ω) towards f (resp. u). If
p = 1, we know that ddcu1j → ddcu1 weakly. Using induction on p and
setting

T :=
∧

1≤i≤p

ddcui, Tj :=
∧

1≤i≤p

ddcuij,

it is enough to prove that if Tj → T weakly then fjTj → fT weakly.
The statement is local so we can assume that Ω is the unit ball and
all the functions are bounded between −1 and 0. Fix Θ a test form of
bidegree (n− p, n− p) and observe that∫
Ω

fjTj∧Θ−
∫
Ω

fT∧Θ =

∫
Ω

(fj−f)Tj+
∫
Ω

f (Tj ∧Θ− T ∧Θ) = Ij+Jj.

It follows from Lemma 3.36 that limj Jj = 0. It thus remains to
prove that limj Ij = 0. Fix δ > 0 small, let K be the support of Θ and
set Ej := K ∩ {|fj − f | ≥ δ}. Then

|Ij| ≤
∫
Ω

|fj − f |Tj ∧Θ ≤
∫
K∩Ej

|fj − f |Tj ∧Θ+ δ

∫
K

Tj ∧Θ.

It follows from previous estimates that

|Ij| ≤ C ′Cap∗(Ej,Ω) + δM(K),

whereM(K) := C supj

∫
K
Tj∧βn−p is finite by Chern-Levine-Nirenberg

inequalities, thus limj Ij = 0. □
Corollary 3.42. Let (hj)j≥0 and (uj)j≥0 be monotone sequences

of uniformly bounded negative plurisubharmonic functions which con-
verge almost everywhere to plurisubharmonic functions h and u respec-
tively. Then for all p ≥ 0,

(−hj)p(ddcuj)n −→ (−h)p(ddcu)n.

Proof. It follows from Proposition 3.40 that the sequences (uj)
and (hj) converge in capacity to u and h respectively.

Observe that if u ∈ PSH−(Ω) then (−u)p is quasicontinuous on
Ω. Thus the sequence (−hj)p converges in capacity to (−h)p. The
conclusion follows therefore from the previous theorem. □

Corollary 3.43. Let P be a family of plurisubharmonic functions
in a domain Ω ⊂ Cn which is locally uniformly bounded from above and
set U := sup{u;u ∈ P}. Then the exceptional set

E := {U < U∗}
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is negligible with respect to any measure ddcu1 ∧ · · · ∧ ddcun, where
u1, · · · , un ∈ PSH(Ω) ∩ L∞

loc(Ω). In particular

Cap(E,Ω) = 0.

Proof. By Choquet’s lemma (see Lemma 2.16 below) we reduce
to the case when P is an increasing sequence of plurisubharmonic func-
tions. Fix (vj) be a sequence of locally uniformly bounded plurisub-
harmonic functions which increases almost everywhere to v and set

E := {sup
j
vj < v}.

It follows from Corollary 3.42 that

vjdd
cu1 ∧ · · · ∧ ddcun → vddcu1 ∧ · · · ∧ ddcun

weakly in Ω. Thus the positive currents (v − vj)dd
cu1 ∧ · · · ∧ ddcun

converge to 0, hence for any compact subset K ⊂ Ω,

lim
j

∫
K

(v − vj)dd
cu1 ∧ · · · ∧ ddcun = 0.

On the other hand if we set w := limj vj in Ω, then w ≤ v and the
monotone convergence theorem yields

lim
j

∫
K

(w − vj)dd
cu1 ∧ · · · ∧ ddcun = 0.

Therefore
∫
K
(w − v)ddcu1 ∧ · · · ∧ ddcun = 0, hence w = v almost

everywhere in K for the measure ddcu1 ∧ · · · ∧ ddcun. □

Theorem 3.44. Let (uj1)j≥0, . . . , (u
j
q)j≥0 be decreasing sequences of

bounded plurisubharmonic functions in Ω which converge respectively
to u1, . . . , uq ∈ PSH(Ω)∩L∞

loc(Ω). Let (Vj) be a decreasing sequence of
plurisubharmonic functions which converges to V ∈ PSH(Ω). Then

Vjdd
cuj1 ∧ . . . ∧ ddcujq −→ V ddcu1 ∧ . . . ∧ ddcuq.

Proof. We already know that ddcuj1∧ . . .∧ddcujq −→ ddcu1∧ . . .∧
ddcuq. It follows from Chern-Levine-Nirenberg inequalities that the

currents Vjdd
cuj1 ∧ . . . ∧ ddcujq have locally uniformly bounded masses.

Assume that Vj ∧1≤i≤q dd
cui

j ∧ βn−p−q → Θ. The reader can check
that Θ ≤ V ddcu1 ∧ . . . ∧ ddcuq (using an argument that we have al-
ready used in previous such proofs) and the problem is to show that∫
B V ∧1≤i≤q dd

cui ∧ βn−p−q ≤
∫
BΘ, for an arbitrary ball B.

We can assume all the V ′
j s are negative and set V k

j := sup{Vj, kρ}
for k ∈ N, where ρ is a defining function for the ball B. Since V ≤
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Vj ≤ V k
j on B and V k

j = 0 in ∂B, we get∫
B
V ∧1≤i≤q dd

cui ∧ βn−q ≤
∫
B
V k
j ∧1≤i≤q dd

cui ∧ βn−q

=

∫
B
u1 ∧ ddcV k

j ∧2≤i≤q dd
cui ∧ βn−q

≤
∫
B
u1

j ∧ ddcV k
j ∧2≤i≤q dd

cui ∧ βn−q

≤ . . . ≤
∫
B
V k
j ∧1≤i≤q dd

cuji ∧ βn−q,

for all j, k ∈ N. The monotone convergence theorem yields∫
B
V ∧1≤i≤q dd

cui ∧ βn−q ≤
∫
B
Vj ∧1≤i≤q dd

cui
j ∧ βn−q,

for all j ∈ N. Letting now j → +∞, we obtain∫
B
V ∧1≤i≤q dd

cui ∧ βn−q ≤ lim sup
j→+∞

∫
B
Vj ∧1≤i≤q dd

cui
j ∧ βn−q ≤

∫
B
Θ,

and the proof is complete. □

6. Maximum principles

The comparison principle is one the most effective tools in pluripo-
tential theory. It is a non linear version of the classical maximum
principle.

6.1. The comparison principle. We establish in this section
several types of maximum principles starting with the following local
maximum principle:

Theorem 3.45. Set T = ddcw1∧· · ·∧ddcwn−p, where 0 ≤ p ≤ n−1
and wi ∈ PSH(Ω) ∩ L∞

loc(Ω). Then for all u, v ∈ PSH(Ω) ∩ L∞
loc(Ω),

1{u>v}(dd
c max{u, v})p ∧ T = 1{u>v}(dd

cu)p ∧ T,

in the sense of Borel measures in Ω.

Proof. Set D := {u > v}. If u is continuous then D is an open
subset of Ω and max{u, v} = u in D hence

(ddc max{u, v})p ∧ T = (ddcu)p ∧ T,

so our claim is easy in this case.
We now treat the general case. Let (uj) a sequence of continuous

plurisubharmonic functions decreasing to u. Since the problem is local
we can assume that Ω is a ball and all functions are bounded and
plurisubharmonic on a fixed neighborhood of Ω. We know

1{uj>v}(dd
c max{uj, v})p ∧ T = 1{uj>v}(dd

cuj)
p ∧ T,
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Set fj := (uj − v)+ and f = (u− v)+. The previous identity yields

fj(dd
c max{uj, v})p ∧ T = fj(dd

cuj)
p ∧ T,

in the weak sense of measures in Ω.
Observe that fj = max{uj, v} − v, f = max{u, v} − v and the

sequence (max{uj, v}) decreases to max{u, v}. It follows therefore from
Theorem 3.22 that

f(ddc max{u, v})p ∧ T = f(ddcu)p ∧ T

in the sense of Borel measures on Ω.
Fix ε > 0. Since 1/(f + ε) is a bounded Borel function, we infer

f

f + ε
(ddc max{u, v})p ∧ T =

f

f + ε
(ddcu)p ∧ T.

Let ε↘ 0 and observe that f/(f + ε) ↗ 1{u>v} to conclude. □

Corollary 3.46. With the same hypotheses as in the theorem,

(ddcmax{u, v})p ∧ T ≥ 1{u≥v}(dd
cu)p ∧+1{u<v}(dd

cv)p ∧ T

in the sense of Borel measures in Ω.

The following is often called the comparison principle:

Theorem 3.47. Assume u, v ∈ PSH(Ω) ∩ L∞(Ω) are such that
lim infz→∂Ω(u(z)− v(z)) ≥ 0. Then∫

{u<v}
(ddcv)n ≤

∫
{u<v}

(ddcu)n.

Proof. By assumption we can find a compact subset K ⊂ Ω and
an arbitrarily small ε > 0 such that sup{u, v − ε} = u in Ω \K. Fix a
domain Ω′ such that K ⊂ Ω′ ⋐ Ω. Then

(6.1)

∫
Ω′
(ddc sup{u, v − ε})n =

∫
Ω′
(ddcu)n.

Indeed set w := sup{u, v−ε} and observe that (ddcw)n−(ddcu)n =
ddcS, where S := w(ddcw)n−1 − u(ddcu)n−1 is a current of bidimension
(1, 1). Since w = u in Ω \K, we get S = 0 there, i.e. the support of
the current S is contained in K. Pick a smooth test function χ on Ω′

such that χ ≡ 1 in a neighborhood of K, we conclude that∫
Ω′
ddcS =

∫
Ω′
χddcS =

∫
Ω′
S ∧ ddcχ = 0,

since ddcχ = 0 on the support of the current S. This proves (6.1).
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We now apply Theorem 3.45 and (6.1) in Ω′ to get∫
{u<v−ε}

(ddcv)n =

∫
{u<v−ε}

(ddc sup{u, v − ε})n

=

∫
Ω′
(ddc sup{u, v − ε})n −

∫
{u≥v−ε}

ddc sup{u, v − ε})n

≤
∫
Ω′
(ddcu)n −

∫
{u>v−ε}

ddc sup{u, v − ε})n

=

∫
Ω′
(ddcu)n −

∫
{u>v−ε}

(ddcu)n

=

∫
{u≤v−ε}

(ddcu)n ≤
∫
{u<v}

(ddcu)n.

The conclusion follows by letting ε↘ 0. □
We now deduce the following global maximum principle:

Corollary 3.48. Assume u, v ∈ PSH(Ω) ∩ L∞(Ω) are such that
lim infz→∂Ω(u(z)− v(z)) ≥ 0. If (ddcu)n ≤ (ddcv)n then v ≤ u in Ω.

Proof. For ε > 0 we set vε := v + ερ, where ρ(z) := |z|2 − R2 is
choosen so that ρ < 0 on Ω. Then {u < vε} ⊂ {u < v} ⋐ Ω. The
comparison principle yields∫

{u<vε}
(ddcvε)

n ≤
∫
{u<vε}

(ddcu)n.

It follows from Corollary 3.24 that

(ddcvε)
n ≥ (ddcv)n + εn(ddcρ)n ≥ (ddcu)n + εn(ddcρ)n

hence
∫
{u<vε}(dd

cρ)n = 0. We infer that the set {u < vε} has Lebesgue

measure 0. Since {u < v} =
∪

j≥1{u < v1/j}, it follows that the set

{u < v} has Lebesgue measure 0 as well, hence v ≤ u on Ω by the
sub-mean value inequalities. □

We now prove the domination principle.

Corollary 3.49. Fix u, v ∈ PSH(Ω)∩L∞(Ω) such that v ≤ u on
∂Ω. Assume that v ≤ u a.e. in Ω with respect to the measure (ddcu)n.
Then v ≤ u in Ω.

Proof. For ε > 0 we set vε := v + ερ, where ρ(z) := |z|2 − R2 is
choosen so that ρ < 0 on Ω. Then {u < vε} ⊂ {u < v} ⋐ Ω. The
comparison principle yields∫

{u<vε}
(ddcvε)

n ≤
∫
{u<vε}

(ddcu)n ≤
∫
{u<v}

(ddcu)n = 0.

Since (ddcvε)
n ≥ εn(ddcρ)n, it follows that the set {u < vε} has volume

zero in Ω hence it is empty by the submean-value inequality. Therefore
{u < v} is empty, i.e. v ≤ u in Ω. □
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6.2. The Lelong class. We have defined above the complex Monge-
Ampère measure of plurisubharmonic functions that are bounded or
with compact singularities.

One can not expect to define the Monge-Ampère measure of any
unbounded plurisubharmonic function as the following example due to
Kiselman [Kis83] shows:

Example 3.50. Set

φ(z) := (− log |z1|)1/n
(
|z2|2 + · · ·+ |zn|2 − 1

)
.

We let the reader check in Exercise 3.8 that φ is a smooth plurisubhar-
monic function in Bn \ {z1 = 0} such that

(ddcφ)n = cn
1− 1

n
−
∑n

ℓ=2 |zℓ|2

|z1|2| log |z1||
dVLeb

and that this measure has infinite mass in Bn \ {z1 = 0}.

We now introduce an important class of plurisubharmonic functions
in Cn for which such a phenomenon cannot occur.

Definition 3.51. The Lelong class L(Cn) is the class of plurisub-
harmonic functions u in Cn with logarithmic growth, i.e. for which
there exists Cu ∈ R such that for all z ∈ Cn,

u(z) ≤ log+ |z|+ Cu.

The reader will check in Exercise 3.13 that a non constant plurisub-
harmonic function in Cn has at least logarithmic growth. This class of
functions will play an important role later as it induces the model class
of quasi-plurisubharmonic functions on the complex projective space
CPn.

We also consider

L+(Cn) := {u ∈ L(Cn) | ∃C ′
u s.t. − C ′

u + log+ |z| ≤ u(z), ∀z ∈ Cn}.

We let the reader check in Exercise 3.14 that locally bounded func-
tions from the Lelong class have finite total Monge-Ampère mass:

Proposition 3.52. If u belongs to L(Cn) ∩ L∞
loc(Cn) then∫

Cn

(ddcu)n ≤ 1.

Moreover if u belongs to L+(Cn), then∫
Cn

(ddcu)n = 1.

The proof of these facts relies on the following result of independent
interest:
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Lemma 3.53. Let u, v be locally bounded plurisubharmonic functions
in Cn such that u(z) → +∞ as z → ∞. Assume that v(z) ≤ u(z) +
o(u(z)) as z → +∞. Then∫

Cn

(ddcv)n ≤
∫
Cn

(ddcu)n.

Proof. Fix ε > 0. Our assumption insures that for R > 1 large
enough, v(z) ≤ (1 + ε)u(z) if |z| ≥ R. The comparison principle yields∫

BR∩{(1+ε)u<v}
(ddcv)n ≤ (1 + ε)n

∫
BR∩{(1+ε)u<v}

(ddcu)n

≤ (1 + ε)n
∫
Cn

(ddcu)n.

Letting R → +∞ and ε→ 0 we obtain the required inequality. □

For classes of plurisubharmonic functions with prescribed Monge-
Ampère mass, one might hope that it is easier to define the complex
Monge-Ampère measure. This is however a delicate problem. The local
domain of definition of the complex Monge-Ampère operator has been
characterized by Blocki and Cegrell in [Ceg04, Blo04, Blo06].

7. Exercises

Exercise 3.1. Let (fj)j∈N be a decreasing sequence of upper semi-
continuous functions in a domain Ω converging to f . Let (µj)j∈N be a
sequence of positive Borel measures in Ω which converges weakly to a
Borel measure µ. Show that any limit point ν of the sequence of mea-
sures νj := fj · µj satisfies the inequality ν ≤ f · µ in the weak sense of
Radon measures on Ω, i.e.

lim sup
j

fjµj ≤ fµ.

Exercise 3.2. Let (µj)j∈N be a sequence of positive Borel measures
on Ω which converges weakly to a positive Borel measure µ on Ω. Show
that for any compact set K ⊂ Ω and any open subset D ⊂ Ω,

lim sup
j

µj(K) ≤ µ(K) and lim inf
j

µj(D) ≥ µ(D).

Exercise 3.3. Fix 0 < α < 1 and consider

z ∈ D 7→ u(z) := −(1− |z|2)α ∈ R.
Show that u is a smooth subharmonic function in the unit disc D,

which is Hölder continuous up to the boundary. Check that

∂2u

∂z∂z̄
(z) = α(1− |z|2)α−1 + α(1− α)|z|2(1− |z|2)α−2,

and conclude that
∫
D dd

cu = +∞. Is this in contradiction with Chern-
Levine-Nirenberg inequalities ?
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Exercise 3.4. Let u be a locally bounded plurisubharmonic func-
tion in a domain Ω and χ : I −→ R a smooth convex non-decreasing
function with u(Ω) ⊂ I. Check that φ := χ ◦ u is plurisubharmonic in
Ω with

ddcφ = χ′(u) ddcu+ χ′′(u) du ∧ dcu,
and

(ddcφ)n = χ′(u)n (ddcu)n + χ′′(u) · χ′(u)n−1 du ∧ dcu ∧ (ddcu)n−1.

2. Fix 0 < α < 1 and consider

z ∈ B 7→ u(z) := −(1− |z|2)α ∈ R.
Prove that u is is plurisubharmonic in the unit ball B, Hölder con-

tinuous up to the boundary and satisfies
∫
B(dd

cu)n = +∞.

Exercise 3.5. Let Ω,Ω′ be domains in Cn, F : Ω′ −→ Ω a holo-
morphic map and u ∈ PSH(Ω) ∩ L∞(Ω).

1) If u ∈ C2(Ω), show that

(ddcu ◦ F )n(ζ) = |JF (ζ)|2(ddcu)n(F (ζ)),
as differential forms in Ω′, where JF denotes the Jacobian of F .

2) Check that if F is proper, then

F∗(dd
cu ◦ F )n = (ddcu)n

in the sense of currents.

3) Deduce that if F is a biholomorphism, then

(F−1)∗(dd
cu)n = (ddcu ◦ F )n.

Exercise 3.6. Consider, for 1 ≤ j ≤ n.

z ∈ Cn 7→ uj(z) := (Imzj)
+ ∈ R.

1) Check that these are continuous plurisubharmonic functions s.t.

ddcu1 ∧ · · · ∧ ddcun = (4π)−nι∗λn,

in the sense of Borel measures on Cn, where λn is the Lebesgue measure
on Rn and ι : Rn −→ Cn is the embedding induced by R → C.

2) Using Theorem 3.18 deduce that the restrictions of plurisub-
harmonic functions to Rn are locally integrable with respect to the n-
dimensional Lebesgue measure λn on Ω ∩ Rn.

3) Consider similarly v : z ∈ Cn 7→
∑n

j=1(Imzj)
+ ∈ Rn. Show that

v is a Lipschitz continuous psh function in Cn such that

(ddcv)n = (n!/2π)nι∗λn.

Exercise 3.7. For n ≥ 2 we set

uj(z) = log(|z1 · · · zn|2 + 1/j) and vj(z) =
n∑

ℓ=1

log(|zℓ|2 + 1/j).
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Show that these sequences of bounded plurisubharmonic functions
both decrease to φ(z) = 2 log |z1 · · · zn| and that (ddcuj)

n = 0 while
(ddcvj)

n converge to a positive multiple of the Dirac mass at the origin.

Exercise 3.8. Set

φ(z) := (− log |z1|)1/n
(
|z2|2 + · · ·+ |zn|2 − 1

)
.

1) Prove that φ is a smooth psh function in Bn \ {z1 = 0} such that

(ddcφ)n = cn
1− 1

n
−
∑n

ℓ=2 |zℓ|2

|z1|2| log |z1||
dVLeb

and that this measure has infinite mass in Bn \ {z1 = 0}.
2) Observe that φ(z) = u ◦ L(z), where

L = z ∈ (C∗)n 7→ (log |z1|, . . . , log |zn|) ∈ Rn

and u is an appropriate convex function. Express (ddcφ)n in terms of
the real Monge-Ampère measure of u and give an alternative proof of
the fact that (ddcφ)n has infinite mass near {z1 = 0}.

Exercise 3.9. Fix r := (r1, r2, · · · , rn) ∈]0,+∞[n and consider

ψr : z ∈ Cn 7→ max{log+(|zj|/rj); 1 ≤ j ≤ n} ∈ R.
1) Prove that ψr is a Lipschitz continuous plurisubharmonic func-

tion and (ddcψr)
n is supported on the torus

Tn(r) := {z ∈ Cn; |z1| = r1, · · · , |zn| = rn}.
2) Observe that (ddcψr)

n is (S1)n-invariant and conclude that (ddcψr)
n

is the normalized Lebesgue measure on Tn(r).

Exercise 3.10. Set

φ(z) := max
1≤j≤n

log+ |zj| where log+ x := max(log x, 0),

and φj(z) =
1
2j
max(0, log |zj1 + · · ·+ zjn|).

1) Show that φj −→ φ in L1
loc(Cn).

2) Show that (ddcφj)
n = 0 when n ≥ 2, while (ddcφ)n is the nor-

malized Lebesgue measure on the torus (S1)n ⊂ Cn. Conclude that the
complex Monge-Ampère operator is not continuous for the L1-topology.

Exercise 3.11. Let φ be a plurisubharmonic function in Cn whose
gradient is in L2

loc. Let φj be a sequence of plurisubharmonic functions
decreasing to φ. Show that ∇φj ∈ L2

loc and that φj → φ in the Sobolev

sense W 1,2
loc .

Exercise 3.12. Let u1, . . . , un be continuous non-negative plurisub-
harmonic functions in Cn such that for all i, ui is pluriharmonic in
(ui > 0). Show that

(ddcmax(u1, . . . , un))
n = ddcu1 ∧ · · · ∧ ddcun.



108 3. THE COMPLEX MONGE-AMPÈRE OPERATOR

Exercise 3.13. Let u be a plurisubharmonic function in Cn. Show
that if

lim sup
|z|→+∞

u(z)

log |z|
= 0

then u is constant.

Exercise 3.14. Show that if u belongs to the Lelong class L+(Cn),
i.e. if there exists a constant Cu ∈ R such that for all z ∈ Cn,

log+ ||z|| − Cu ≤ u(z) ≤ log+ ||z||+ Cu,

then
∫
Cn(dd

cu)n = 1.

Exercise 3.15. Set u(z) := log |z|, v(z) = max1≤j≤n log |zj|, and
w(z) = max(log |z1|, log |z2 − z21 |, . . . , log |zn − z2n−1|).

Show that
(ddcu)n = (ddcv)n = (ddcw)n = δ0

is the Dirac mass at the origin of Cn. Conclude that the comparison
principle can not hold for these functions.

Exercise 3.16. Set φ(z) = log+ |z| = max(log |z|, 0).
1) Let χ : R → R be a smooth convex function and set ψ(z) =

χ(log |z|). Show that ψ is a psh function with compact singularities.
Prove that (ddcψ)n is absolutely continuous with respect to Lebesgue
measure if ψ has zero Lelong number at the origin.

2) Approximate max(x, 0) by a smooth decreasing family of convex
functions χε, use 1) and let ε decrease to zero to conclude that (ddcφ)n

is the normalized Lebesgue measure on the unit sphere.

3) Use the invariance properties of φ and Exercise 3.14 to give an
alternative proof of this result.

Exercise 3.17. Let u be a smooth plurisubharmonic function in
some domain Ω ⊂ Cn.

1) Assume that for all p ∈ Ω there exists a holomorphic disc D ⊂ Ω
centered at p such that u|D is harmonic. Prove that (ddcu)n ≡ 0.

2) Show conversely that if (ddcu)n ≡ 0 and (ddcu)n−1 ̸≡ 0 then there
exists a holomorphic foliation of Ω by Riemann surfaces La such that
u|La is harmonic for all a (see [BK77] for some help).

Exercise 3.18. Let µ be a probability measure in the unit ball B of
Cn and set

Vµ(z) :=

∫
w∈B

log |z − w|dµ(w).

Check that Vµ is plurisubharmonic. Give conditions on µ to insure
that Vµ is locally bounded, and check that in this case (ddcVµ)

n is ab-
solutely continuous with respect to Lebesgue measure (see [?] for more
information).



CHAPTER 4

The Dirichlet problem

1. Introduction

Let Ω ⋐ Cn be a bounded domain in Cn, β := ddc|z|2 the usual
euclidean metric on Cn. Given φ ∈ C0(∂Ω) and 0 ≤ f ∈ C0(Ω̄), we
consider the Dirichlet problem for the complex Monge-Ampère opera-
tor:

(1.1)

 u ∈ PSH(Ω) ∩ C0(Ω̄)
(ddcu)n = fβn in Ω
u = φ on ∂Ω

Observe that up to a constant βn is the volume form on Cn, hnce the
right hand side µ := fβn can be seen as a positive Radon measure on
Ω, hence a distribution, so that the equality above must be understood
in the weak sens of distribution on Ω.

When n = 1 this is the classical Dirichlet problem for the Laplace
operator. In this case one can find an explicit formula for the solution,
when the domain is sufficiently regular, generalizing the Poisson-Jensen
formula in the unit disc proved in Chapter 2.

For more general domains, as well as for the higher dimensional
setting, one uses the method of upper-envelopes due to Perron and
the comparison principle to build the solution and show it is unique.
Namely we consider

(1.2) U(z) = UΩ,φ,f (z) := sup{u(z);u ∈ B(Ω, φ, f)},

where B = B(Ω, φ, f) is the class of subsolutions,

B := {u ∈ PSH ∩ L∞(Ω); (ddcu)n ≥ fβn in Ω and u∗ ≤ φ on ∂Ω}.

Our goal is to show that when Ω is strictly pseudoconvex domain,
then the maximal subsolution U is the unique solution to the Dirichlet
problem (1.1).

Recall that a bounded domain Ω ⋐ Cn is strictly pseudoconvex if
it admits a strictly plurisubharmonic defining function i.e. there exists
a continuous plurisubharmonic function ρ in Ω t

lim
z→∂Ω

ρ(z) = 0; ddcρ ≥ β, weakly on Ω.

A typical example is the euclidean ball in Cn given by

Bn := {z ∈ Cn; ρ(z) := |z|2 − 1 < 0}.
109
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When f = 0, Bremermann [Bre59] has shown that the envelope U
is plurisubharmonic and has the right boundary values, by constructing
appropriate barriers (this is where the strong pseudoconvexity assump-
tion is used). Later on Walsh [Wa68] proved that U is continuous up
to the boundary. Then Bedford and Taylor showed in [BT76] that the
complex Monge-Ampère measure (ddcU)n is well defined, and U solves
the Dirichlet problem (1.1 ).

We give in this chapter a complete proof of these results using sim-
plifications due to Demailly in the homogeneous case [Dem91], as well
as ideas from optimal control and viscosity theory developed recently
in [EGZ11]. These methods allow a new description of the Perron-
Bremermann envelope using Laplace operators associated to a family
of constant Kähler metrics on Ω, following an observation by Gaveau
[Gav77]. This avoids the general measure-theoretic construction of
Goffman and Serrin [?] used in [BT76].

2. The Dirichlet problem for the Laplace operator

We have shown in Chapter 2 that the Poisson transform solves
explicitly the Dirichlet problem for the Laplace equation in R2 (complex
dimension n = 1). We study here the Laplace operator in RN with
N ≥ 3. This will help us later on in getting some information on
plurisubharmonic function in domains of Cn, with N = 2n.

2.1. The maximum principle. We fix here an integerN ≥ 3 and
a domain Ω ⊂ RN . Let x = (x1, .., xN) denote the canonical coordinates
in RN . For x = (x1, · · · , xN) ∈ RN and y = (y1, · · · , yN) ∈ RN we set

x · y :=
N∑
j=1

xjyj.

and |x|2 = x · x =
∑N

j=1 x
2
j . The Laplace operator in RN is defined by

∆ =
N∑
i=1

∂2

∂x2i
.

Harmonic functions in a domain Ω ⊂ RN are those which satisfy
the Laplace equation ∆u = 0 in Ω (in the smooth or weak sense of
distributions). They can also be characterized as continuous functions
which satisfy the spherical mean-value property.

Definition 4.1. A function u : Ω ⊂−→ [−∞,+∞[ is subharmonic
if it is upper semi-continuous, and for any ball B(a, r) ⋐ Ω,

u(a) ≤ 1

σN−1

∫
|ξ|=1

u(+a+ rξ)dσ(ξ),

where dσ is the area measure on the unit sphere S := {x ∈ RN ; |x| = 1}.
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It follows from Chapter 2 that plurisubharmonic functions in a do-
main Ω ⊂ Cn are subharmonic as functions of 2n-real variables.

We denote by SH(Ω) the positive cone of subharmonic functions
in the domain Ω which are not identically −∞. It follows from the
submean value inequalities that

SH(Ω) ⊂ L1
loc(Ω).

Proposition 4.2. Let u be a subharmonic function in a bounded
domain Ω ⋐ RN such that lim supx→∂Ω u(x) ≤ 0. Then u ≤ 0 in Ω.
Moreover for all x ∈ Ω,

u(x) < sup
∂Ω

u

unless u is constant in Ω.

The proof of this maximum principle is similar to the one given in
Chapter 2.

2.2. Green functions. For N ≥ 3, the Newton Kernel

KN(x) :=
−1

(N − 2)σN−1

|x|2−N

is a locally integrable function in RN which satisfies

∆KN = δ0

in the sense of distribution in RN , where δ0 is the Dirac measure at
the origin. In particular, KN is subharmonic in RN and harmonic in
RN \{0}. It is the fundamental solution to the Laplace operator in RN .

Definition 4.3. The Green function for the unit ball B is

G(x, y) = GB(x, y) := KN(x− y)−KN(|y|x− y/|y|),
where (x, y) ∈ B× B.

Observe that G is well defined in B × B and has the same singu-
larities as KN(x − y) since the second term is smooth. It satisfies the
following properties:

(1) For all y ∈ B, x 7−→ G(x, y) is subharmonic in B,
(2) G(x, y) = G(y, x) in B× B,
(3) G < 0 in B× B, and G(x, y) = 0 if (x, y) ∈ ∂B× B,
(4) for all y ∈ B, ∆xG(x, y) = δy.

Definition 4.4. The function x 7−→ G(x, y) is called the Green
function of the ball B with pole at y.

It follows from the maximum principle for the Laplace operator that
G is unique function satisfying these properties.

The explicit formula for the Newtonian Kernel KN yields

G(x, y) =
−1

(N − 2)σN−1

(
∥x− y|2−N − (1− 2x · y + |x|2|y|2)1−N/2

)
.
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Recall that if u, v are smooth functions in B, then∫
B
(u∆v − v∆u)dλ =

∫
∂B

(
u
∂v

∂ν
− v

∂u

v∂ν

)
dσ.

Here ∂/∂ν is the derivative along the outward normal vector ν in ∂B
and dσ is the euclidean area measure on ∂B = S. To get a representa-
tion formula for a subharmonic function u we apply this formula with
v := G(x, ·) and x ∈ B fixed. We thus consider the Poisson kernel

P (x, y) := ∂G(x, y)/∂ν(y), (x, y) ∈ B× ∂B.
An easy computation shows that

P (x, y) :=
1

(N − 2)σN−1

1− |x|2

|x− y|N
, (x, y) ∈ B× ∂B.

Proposition 4.5. Let u ∈ SH(B) ∩ C0(B̄). Then for all x ∈ B,

(2.1) u(x) =

∫
S
u(y)P (x, y)dσ(y) +

∫
B
G(x, y)dµu(y),

where µu := ∆u is the the Riesz measure of u.
In particular if u is harmonic in B and continuous in B̄ then

(2.2) u(x) =

∫
S
u(y)P (x, y)dσ(y).

The proof is left as an Exercise 4.2. We can thus solve the Dirich-
let problem for the homogeneous Laplace equation with continuous
boundary values:

Theorem 4.6. Fix φ ∈ C0(∂B). The Poisson transform of φ,

(2.3) Pφ(x) :=

∫
|y|=1

φ(y)P (x, y)dσ(y), x ∈ B,

is harmonic in B, continuous in B̄ and satisfies Pφ(x) = φ(x) for x ∈ S.

The proof is identical to the one for the unit disc (see Chapter 2).

2.3. A characterization of subharmonic functions. The fol-
lowing characterization of subharmonic functions will be quite useful:

Proposition 4.7. Let u : Ω −→ RN be an upper semi-continuous
function in a domain Ω ⊂ RN . The following conditions are equivalent:

1. the function u is subharmonic in Ω;

2. ∆q(x0) ≥ 0 for all x0 ∈ Ω and all C2-smooth functions q in a
small ball B of center x0 such that u ≤ q in B and u(z0) = q(z0);

3. u ≤ h in B, for all balls B ⋐ Ω and all functions h : B̄ −→ R
continuous in B̄ and harmonic in B such that u ≤ h in ∂B.

A C2-smooth function q in a ball B = B(x0, r) s.t. u ≤ q in B and
u(x0) = q(x0) is called an upper test function for u at the point x0.
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Proof. We first prove (1) =⇒ (2). Assume that u is subharmonic
and fix x0 ∈ Ω. If there exists a C2-smooth upper test function q at
x0 such that ∆q(x0) < 0, then for ε > 0 small enough the function
x 7−→ u(x)− q(x)− ε|x− x0|2 is subharmonic in a small ball B(x0, r),
equal to 0 at x0 and negative for 0 < |x− x0| < r small enough. This
contradicts the maximum principle.

We now prove (2) =⇒ (3). Let h be a harmonic function in some
B(a, r) ⋐ Ω, continuous on B̄(a, r), and such that u ≤ h in ∂B(a, r).
Fix ε > 0 and observe that

u(x) ≤ hε(x) := h(x)− ε(|x− a|2 − r2) on ∂B(a, r).

By upper semi-continuity, there exists x0 ∈ B̄(a, r) such that

u(x0)− hε(x0) = max
B̄(a,r)

(u− hε)

If x0 ∈ B, we can fix B(z0, s) ⊂ B(a, r) so that q := hε−hε(x0)+u(x0)
is a smooth upper test function for u at x0 s.t. ∆q(x0) = −2nε < 0, a
contradiction. Thus x0 ∈ ∂B and u ≤ hε in B(a, r) for all ε > 0. We
infer u ≤ h in B(a, r) by letting ε→ 0.

We finally prove (3) =⇒ (1). Fix a ∈ Ω and r > 0 such that
B̄(a, r) ⊂ Ω. Let (φj) be a sequence of continuous functions decreasing
to u in ∂B. It follows from Theorem 4.6 that there exists a harmonic
function hj in B continuous in B̄ such that hj = φj in ∂B. Property
(3) yields u ≤ hj in B for any j ≥ 1. Thus

u(a) ≤ hj(a) =
1

σN−1

∫
|y|=1

φj(a+ ry)dσ(y).

We infer (j → +∞) that u satisfies the submean value inequalities. □
The implication (1) =⇒ (2) is a soft version of the maximum prin-

ciple. Property (2) can be used to define plurisubharmonicity in the
sense of viscosity as we explain in the sequel.

3. The Perron-Bremermann envelope

3.1. A characterization of plurisubharmonicity. Let H+
n de-

note the set of all semi-positive hermitian n× n matrices. We set

Ḣ+
n := {H ∈ H+

n ; detH = n−n}.
The following observation of Gaveau [Gav77] is quite useful:

Lemma 4.8. Fix Q ∈ H+
n . Then

(det Q)
1
n = inf{tr(H Q) ; H ∈ Ḣ+

n }

Proof. Every matrix H ∈ Ḣ+
n has a square root which we denote

by H1/2 ∈ H+
n . Thus H1/2 · Q · H1/2 ∈ H+

n . Diagonalizing the latter
and using the arithmetico-geometric inequality, we get

(det Q)
1
n (detH)

1
n = (det(H1/2 ·Q ·H1/2))

1
n ≤ 1

n
tr(H1/2 ·Q ·H1/2).
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Therefore (detQ)
1
n (detH)

1
n ≤ 1

n
tr(Q.H), hence

(det Q)
1
n ≤ inf{tr(H.Q);H ∈ Ḣ+

n }.

Suppose now that Q ∈ H+
n is positive. There exists P an invertible

hermitian matrix and a diagonal matrix A = (λi) with positive entries
λi > 0 such that Q = P.A.P−1. Set

αi =
(
∏

i λi)
1
n

nλi
.

Observe that H = (αi) ∈ Ḣ+
n and (detA)

1
n = tr(A.H), hence

(det Q)
1
n = (detA)

1
n = tr(H · A) = tr(H · P · A · P−1) = tr(H ′ ·Q),

where H ′ = P ·H · P−1 ∈ Ḣ+
n .

If Q is merely semi-positive we consider Qε := Q+ εIn, ε > 0, and
apply the previous argument to obtain

(det Qε)
1
n = inf{tr(H.Qε);H ∈ Ḣ+

n } ≥ inf{tr(H.Q); Ḣ+
n }.

We conclude by letting ε→ 0. □

For H ∈ Ḣ+
n , we consider

(3.1) ∆H :=
n∑

j,k=1

hkj̄
∂2

∂zj∂z̄k
,

the Laplace operator associated to the (constant) Kähler metric defined
by H̄−1 in Cn. The previous lemma yields the following interesting
characterization of plurisubharmonicity:

Proposition 4.9. Let u : Ω −→ [−∞,+∞[ be an upper semi-
continuous function. The following properties are equivalent

(i) The function u is plurisubharmonic in Ω;

(ii) ddcq(z0) ≥ 0 for all z0 ∈ Ω and all functions q C2 in a neigh-
borhood B of z0 such that u ≤ q in B and u(z0) = q(z0);

(iii) u is subharmonic and for all H ∈ Ḣ+
n , ∆Hu ≥ 0 in the sense

of distributions.

Proof. We first prove (i) =⇒ (ii). Assume that is u is plurisub-
harmonic and fix z0 ∈ Ω. If there exists a C2-smooth upper test q at
z0 such that ddcq(z0) is not semi-positive, there is a direction ξ ∈ Cn,

ξ ̸= 0 such that
∑

j,k ξj ξ̄k
∂2q

∂zj∂z̄k
(z0) < 0. Then for ε > 0 small enough

τ 7−→ u(z0 + τξ)− q(z0 + τξ)− ε|τ |2

is subharmonic in a neighborhood of the origin where it reaches a local
maximum, contradicting the maximum principle.
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We now prove (ii) =⇒ (iii). Let h be a function that is harmonic
in a ball B = B(a, r) ⋐ Ω, continuous on B̄(a, r), and such that u ≤ h
in ∂B(a, r). We claim that u ≤ h in B. Fix ε > 0 and observe that

u(x) ≤ hε(x) := h(x)− ε(|x− a|2 − r2) on ∂B(a, r).

By upper semi-continuity, there exists x0 ∈ B̄(a, r) such that

u(x0)− hε(x0) = max
B̄(a,r)

(u− hε).

If x0 ∈ B, we can choose a small ball B(x0, s) ⊂ B so that

q := hε − hε(x0) + u(x0)

is an upper test for u at x0 which satifies ∆q(x0) = −2nε < 0, a
contradiction. Therefore x0 ∈ ∂B and u ≤ hε in B(a, r) for all ε > 0.
We infer u ≤ h in B(a, r) as ε→ 0.

This proves that u is subharmonic in Ω by Proposition 4.7, hence
∆u ≥ 0 in Ω in the sense of distributions. To prove that ∆Hu ≥ 0 for
all H ∈ Ḣ+

n , we use the following observations:
(a) Let T : Cn → Cn be a C-linear isomorphism and q : Cn

ζ → Cn
z

be a C2-smooth function in a neighborhood of a point z0. Set z = T (ζ)
and qT (ζ) := q(z) = q(T (ζ)), then qT is C2-smooth function in a
neighborhood of ζ0 := T−1(z0) and

∆qT (ζ) =
n∑

j=1

∂2qT (ζ)

∂ζj∂ζ̄k
= tr(T ∗Q(z)T ),

where T ∗ denotes the complex conjugate transpose of T := (
∂zj
∂ζk

) and

Q(z) := ( ∂2q
∂zj∂z̄k

(z)) is the complex hessian of q at z. If H ∈ Ḣ+
n we can

find a hermitian positive matrix T s.t. T ∗T = H, one then gets

∆qT (ζ) = ∆Hq(z).

We leave the details as an Exercise 4.4.
(b) Fix u : Ω −→ [−∞,+∞[ an upper semi-continuous function and

z0 ∈ Ω. Then q is an upper test function for u at z0 iff q̃ := qT := q ◦T
is an upper test function for uT at the point ζ0 := T−1(z0).

Observation (b) shows that the condition (ii) is invariant under
complex linear change of coordinates. Observation (a) and the proof
preceeding it show that (ii) implies (iii).

We finally show that (iii) =⇒ (i). Assume first that u is smooth.
Condition (iii) means that the complex hessian matrix A of u at z0 ∈ Ω
is a hermitian matrix that satisfies tr(HA) ≥ 0 for all H ∈ Hn. We
infer, by diagonalizing A, that A is a semi-positive hermitian matrix.
Thus u is plurisubharmonic in Ω.

To treat the general case we regularize uε = u ⋆ ρε (see Chapter 1)
and obtain smooth functions satisfying the Condition (iii) since

∆Huε = (∆Hu) ⋆ ρε in Ωε
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by linearity. Thus uε is plurisubharmonic in Ωε. Since u is subharmonic
in Ω, it follows that uε decreases to u as ε decreases to 0 hence u is
plurisubharmonic in Ω. □

3.2. Perron envelopes.
3.2.1. The viscosity point of view. We establish here some useful

facts which are also the first steps towards a viscosity approach to
solving complex Monge-Ampère equations (see [GZ17]).

Proposition 4.10. Let u ∈ PSH(Ω)∩L∞
loc(Ω) and 0 ≤ f ∈ C0(Ω).

The following conditions are equivalent :
(1) (ddcu)n ≥ fβn;

(2) ∆Hu ≥ f 1/n for all H ∈ Ḣ+
n .

This equivalence has been observed by Blocki [Blo96, Theorem
3.10] when u continuous, by using a slightly different argument.

Proof. We first prove (2) =⇒ (1). Suppose that u ∈ C2(Ω). It
follows from Lemma 4.8 that

∆Hu ≥ f 1/n, ∀H ∈ Ḣ+
n

is equivalent to (
det(

∂2u

∂zj∂z̄k
)

)1/n

≥ f 1/n,

which is itself equivalent to (ddcu)n ≥ fβn. All these inequalities hold
pointwise in Ω.

When u is not smooth, we fix H ∈ Ḣ+
n and let (χϵ) be standard

mollifiers. The functions uϵ := u ⋆ χϵ are plurisubharmonic in Ωε and
decrease to u as ε decreases to 0. Since the conditions (2) are linear
we infer ∆Huϵ ≥ (f 1/n)ϵ pointwise in Ωε. We can use the first case
since uϵ is smooth, obtaining (ddcuϵ)

n ≥ ((f 1/n)ϵ)
nβn pointwise in Ωε.

Letting ϵ ↘ and applying the convergence theorem for the complex
Monge-Ampère operator, we obtain (ddcu)n ≥ fβn weakly in Ω.

We now prove that (1) =⇒ (2). Fix x0 ∈ Ω and q a C2-smooth func-
tion in a neighborhood B of x0 such that u ≤ q in this neighborhood
and u(x0) = q(x0). We know from Proposition 4.9 that ddcq(x0) ≥ 0.
We claim that (ddcq(x0))

n ≥ f(x0)β
n. Suppose by contradiction that

(ddcq)nx0
< f(x0)β

n and set

qϵ(x) = q(x) + ϵ

(
∥x− x0∥2 −

r2

2

)
.

If 0 < ϵ < 1 is small then 0 < (ddcqϵ(x0))
n < f(x0)β

n. Since f is lower
semi-continuous at x0, there exists r > 0 such that

(ddcqϵ(x))n ≤ f(x)βn in B(x0, r).
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It follows that (ddcqϵ)n ≤ (ddcu)n in B(x0, r) and qϵ ≥ q ≥ u on
∂B(x0, r). The comparison principle implies that qϵ ≥ u on B(x0, r).
But qϵ(x0) = q(x0)− ϵ r

2

2
= u(x0)− ϵ r

2

2
< u(x0), a contradiction.

It follows from Proposition 4.9 that for any x0 ∈ Ω, and every upper
test q for u at x0, we have ∆Hq(x0) ≥ f 1/n(x0) for any H ∈ Ḣ+

n .
If f is positive and smooth, there exists g ∈ C∞(Ω̄) such that

∆Hg = f 1/n. Thus h = u − g is ∆H-subharmonic by Proposition 4.7,
i.e. ∆Hh ≥ 0, hence ∆Hu ≥ f 1/n for any H ∈ Ḣ+

n .
If f is positive and merely continuous, we observe that

f = sup{g; g ∈ C∞(Ω̄), f ≥ g > 0},
hence (ddcu)n ≥ fβn ≥ gβn for any such g. The previous case yields
∆Hu ≥ g1/n. We infer ∆Hu ≥ f 1/n for all H ∈ Ḣ+

n .
Assume finally f is merely continuous and semipositive. Observe

that uϵ(z) = u(z) + ϵ∥z∥2 satisfies

(ddcuϵ)n ≥ (f + ϵn)βn.

It follows from the previous case that for all H ∈ Ḣ+
n ,

∆Hu
ϵ ≥ (f + ϵn)1/n.

Letting ϵ decrease to 0 yields ∆Hu ≥ f 1/n for all H ∈ Ḣ+
n . □

3.2.2. Perron-Bremermann envelopes. Previous proposition allows
us to reinterpret the Perron-Bremermann envelope by using the Laplace
operators ∆H . Consider

V = {v ∈ PSH ∩ L∞(Ω), v|∂Ω ≤ φ and ∆Hv ≥ f 1/n ∀H ∈ Ḣ+
n }.

Proposition 4.11. The class V is non-empty, stable under maxima
and bounded from above in Ω. The Perron-Bremermann envelope

(3.2) UΩ,φ,f (z) = sup{v(z); v ∈ V}
is plurisubharmonic in Ω.

Proof. Let ρ be a strictly plurisubharmonic defining function for
Ω. Choose A > 0 big enough so that Addcρ ≥ M1/nβ, where M :=
∥f∥L∞(Ω). We use here that Ω is bounded and ρ is strictly plurisub-
harmonic near Ω. Fix B > 0 so large that −B ≤ φ ≤ B. Then
v0 := Aρ−B ∈ V since

∆Hv0 ≥ A∆Hρ ≥M1/n ≥ f 1/n,

for all H ∈ Ḣ+
n . Thus V ̸= ∅.

Since φ is bounded from above by B, the maximum principle shows
that all functions in V are bounded from above by B. It follows that
U := UΩ,φ,f is well defined and given by

U(z) = sup{v(z); v ∈ V0}, z ∈ Ω,

where
V0 := {v ∈ V ; v0 ≤ v ≤M}.
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We claim that V0 ⊂ L1(Ω) is compact. Indeed let (vj) be a sequence
in V0. This is a bounded sequence of plurisubharmonic functions in
L1(Ω). Thus there exists a subsequence (wj) such that wj → w in
L1(Ω), where w is plurisubharmonic and satisfies w = (lim supj wj)

∗ in

Ω. We infer v0 ≤ w ≤ B and for all H ∈ Ḣ+
n ,

f 1/n ≤ ∆Hwj → ∆Hw,

hence ∆Hw ≥ f 1/n. Therefore w ∈ V0, which proves the claim. It
follows that U is plurisubharmonic in Ω.

We now prove that the class V is stable under maxima, that is if
u, v ∈ V then max{u, v} ∈ V . It suffices to show that for all H ∈ Ḣ+

n

(3.3) ∆H max{u, v} ≥ min(∆Hu,∆Hv)

Indeed let µ := min{∆Hu,∆Hv} in the sense of Radon measures in
Ω and suppose that µ({z;u(z) = v(z)}) = 0. The local maximum
principle shows that ∆H max{u, v} ≥ µ in the sense of Borel measures
in the Borel set Ω′ = {u ̸= v}. Since µ(Ω \ Ω′) = 0 , we get

∆H max{u, v} ≥ µ := min{∆Hu,∆Hv}.

When µ({z;u(z) = v(z)}) ̸= 0 we replace v by v + ϵ, and observe
that µ({z;u(z) = v(z) + ϵ}) ̸= 0 for at most countably many ϵ’s.
The previous case yields ∆H max{u, v + ϵ} ≥ min{∆Hu,∆Hv} = µ
for those ε’s. Since ∆H max{u, v + ϵ} converges to ∆H max{u, v}, we
obtain (3.3). □

3.3. Continuity of the envelope.

Theorem 4.12. Let 0 ≤ f ∈ C(Ω̄) be a continuous function in Ω̄
and φ ∈ C(∂Ω). The Perron-Bremermann envelope

U = sup{v; v ∈ V(Ω, φ, f)}

is a continuous plurisubharmonic function which belongs to V(Ω, φ, f)
and satisfies U = φ on ∂Ω.

If φ ∈ C1,1(∂Ω) then the modulus of continuity of U satisfies

ωU(δ) ≤ Cδ∥φ∥C1,1(∂Ω) +Bωf1/n(δ),

where B,C only depend on the geometry of the domain Ω. In particular
U is Lipschitz on Ω̄ whenever f 1/n is Lipschitz on Ω̄.

Proof. The proof proceeds in several steps.
Step 1. We first show that U ∈ V . We have already shown in

Proposition 4.11 that U is plurisubharmonic and bounded. It follows
from Choquet’s lemma that there exists a sequence (vj) in V(Ω, φ, f)
such that

U = (supj vj)
∗ in Ω.
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By Proposition 4.11 (stability of the family under max), we can further
assume that (vj) in non decreasing. Fix H ∈ Ḣ+

n . Since ∆Hvj ≥ f 1/n

for all j and vj → u in L1(Ω), we infer ∆Hu ≥ f 1/n, hence U ∈ V .
Step 2. Contruction of barriers at boundary points. Let ρ be a

strictly plurisubharmonic defining function for Ω with ddcρ ≥ c0dd
c|z|2,

for some c0 > 0. Fix ε > 0 and let ψ be a C1,1-smooth function in Ω̄
such that |ψ − φ| ≤ ε on ∂Ω. For K > 1 large enough,

v0 := Kρ+ ψ − 2ε,

is a continuous function near Ω̄ such that v0 ≤ φ on ∂Ω and

ddcv0 = Kddcρ+ ddcψ ≥M1/nβ,

where M = supΩ f . Observe that K depends on the C1,1-bound of ψ.
Fix H ∈ Ḣ+

n . Then

∆Hv0 ≥ f 1/n.

Therefore v0 belongs to the class V and v0 ≤ U . It follows that

lim inf
z→ζ

U(z) ≥ ψ(ζ)− 2ε,

for all ζ ∈ ∂Ω. Letting ψ converge to φ and then ε→ 0, we obtain

lim inf
z→ζ

U(z) ≥ φ(ζ).

The same argument shows that

w0 := Kρ− ψ − 2ε

is plurisubharmonic and continuous on Ω̄, with −φ − ε ≤ w0 ≤ −φ.
Observe that U ≤ −w0. Indeed if v ∈ V(Ω, φ, f) then v + w0 is a
bounded plurisubharmonic function in Ω that satisfies v∗ + w0 ≤ 0 on
∂Ω. The maximum principle yields v + w0 ≤ 0 hence U ≤ −w0 in Ω.
We infer that lim supz→ζ U(z) ≤ φ(ζ), for all ζ ∈ ∂Ω. Thus

(3.4) lim
z→ζ

U(z) = φ(ζ).

Step 3. U is continuous on Ω̄. It follows from the above estimates
that for ζ ∈ ∂Ω and z ∈ Ω,

(3.5) U(z)− φ(ζ) ≤ −w0(z)− φ(ζ) ≤ −Kρ(z) + ε.

Fix C > 0 such that −ρ(z) ≤ C|z − ζ| for ζ ∈ ∂Ω and z ∈ Ω. If δ > 0
is small enough we infer, for z ∈ Ω, ζ ∈ ∂Ω,

|z − ζ| ≤ δ =⇒ U(z)− φ(ζ) ≤ KCδ + ε.

Fix a ∈ Cn, |a| < δ, and define Ωa := Ω− a. For v ∈ V we set

v1 := max{v, v0}.
It follows from (3.3) that v1 ∈ V and φ − ε ≤ v1 ≤ φ in ∂Ω.

Moreover if ζ ∈ Ωa ∩ ∂Ω,
v1(ζ + a) ≤ U(ζ + a) ≤ φ(ζ) +KCδ + ε,
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while v1(z + a) ≤ φ(z + a) +KCδ + ε, if z ∈ Ω ∩ ∂Ωa. Therefore

w(z) =

{
v1(z), if z ∈ Ω \ Ωa

max{v1(z), v1(z + a)− ε−KCδ} if z ∈ Ω ∩ Ωa

is a bounded plurisubharmonic function in Ω such that w ≤ φ in ∂Ω
and, by (3.3), for all H ∈ Ḣ+

n ,

∆Hw(z) ≥ min{f 1/n(z), f 1/n(z + a)}

in Ω ∩ Ωa, while ∆Hw(z) ≥ f 1/n(z) in Ω \ Ω̄a.
Let ωf1/n denote the modulus of continuity of f 1/n in Ω. Since

|a| ≤ δ, it follows that f 1/n(z + a) ≥ f 1/n(z)− ωf1/n(δ) hence

∆Hw(z) ≥ f 1/n(z)− ωf1/n(δ)

in Ω. The function

w̃(z) := ωf1/n(δ)ρ(z) + w(z), z ∈ Ω,

therefore satisfies w̃ ∈ V and w∗ ≤ φ in ∂Ω, hence w̃ ≤ U in Ω. Thus

v(z + a) ≤ v1(z + a)− ε−KCδ ≤ U(z) +Bωf1/n(δ),

if z ∈ Ω and z + a ∈ Ω, where B = − infΩ ρ. Since v was arbitrary in
V , it follows that

U(z + a)− ε−KCδ −Bωf1/n(δ) ≤ U(z),

if z ∈ Ω and z + a ∈ Ω.
This proves that U is continuous in Ω, hence on Ω̄ by (3.4). There-

fore U ∈ V satisfies the requirements of the first part of the theorem.

Step 4. Modulus of continuity of U . In the construction above the
constants B,C do not depend on ε and δ, while the constantK = K(ψ)
depends only on the C1,1-bound of an ε-approximation ψ of φ in ∂Ω.
When φ is C1,1-smooth we can take ψ = φ and thus get a precise
control on the modulus of continuity of U : for δ > 0 small enough,

ωU(δ) ≤ Cδ||φ||C1,1 +Bωf1/n(δ),

as desired. □

4. The case of the unit ball

We are going to show that the Perron-Bremermann envelope U
solves the Monge-Ampère equation (ddcU)n = fβn in Ω. Following
[BT76] (and simplifications by [Dem91]) we first prove this statement
when Ω = B is the unit ball and f, φ are regular enough.
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4.1. C1,1-regularity.

Theorem 4.13. Assume Ω = B is the unit ball, f 1/n ∈ C1,1(B̄)
and φ ∈ C1,1(∂B). Then the Perron-Bremermann envelope U = UB,φ,f
admits second order partial derivates almost everywhere in B which are
locally bounded in B, i.e. U ∈ C1,1

loc (B).

Here and in the sequel we set

C0,α(Ω) = {v ∈ C(Ω); ∥v∥α < +∞}
for 0 < α ≤ 1, where the α-Hölder norm is given by

∥v∥α = ∥v∥α,Ω = sup{|v(z)| : z ∈ Ω}+ sup

{
|v(z)− v(y)|

|z − y|α
: z, y ∈ Ω

}
.

If 0 < α ≤ 1 and k ∈ N∗, then Ck,α(Ω) denotes the class of functions
which admits continuous partial derivatives up to order k, and whose
k-th order partial derivatives are Hölder continuous of order α in Ω.
We shall also consider the spaces Ck,α

loc (Ω) and C
k,α(∂Ω) with obvious

notations.

Proof. The proof of Theorem 4.13 consists of several steps and
occupies the rest of this section. Recall from Theorem 4.12 that U ∈
C0,1(B̄). We are going to show that for any fixed compact K ⊂ B, there
exists C = C(K) > 0 such that for any z ∈ K and |h| small enough,

(4.1) U(z + h) + U(z − h)− 2U(z) ≤ C|h|2.
This implies that U has second order partial derivatives almost every-
where that are locally bounded.

Step 1: Using automorphisms of the ball B as translations. The
main difficulty with the expression U(z+h)+U(z−h)− 2U(z) is that
it is not defined in B since translations do not preserve the ball. We
use automorphisms of B instead and study the corresponding invariant
symmetric differences of second order. For a ∈ B, we set

Ta(z) =
Pa(z)− a+

√
1− |a|2(z − Pa(z))

1− ⟨z, a⟩
; Pa(z) =

⟨z, a⟩
|a|2

a

where ⟨·, ·⟩ denote the Hermitian product in Cn. The reader will check
in Exercise 4.7 that Ta is a holomorphic automorphism of the unit ball
such that Ta(a) = 0. Note that T0 is the identity. We set

(4.2) h = h(a, z) := a− ⟨z, a⟩z.
Observe that h(−a, z) = −h(a, z). If |a| ≤ 1/2 then

Ta(z) = z − h+O(|a|2),
where O(|a|2) ≤ C|a|2, with C a uniform constant independent of z ∈ B
when |a| ≤ 1/2. Thus T±a is the translation by ∓h up to small second
order terms, when |a| is small enough.
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Step 2: Estimating the invariant symmetric differences of U . The
invariant symmetric differences of U in B are

z ∈ B 7−→ U ◦ Ta(z) + U ◦ T−a(z)− 2U(z) ∈ R.
We also consider the plurisubharmonic function

z 7→ Va(z) :=
1

2
(U ◦ Ta(z) + U ◦ T−a(z)),

and try to compare it to U in B. We claim that

Va(z) ≤ U(z) + C|a|2,
for some constant C > 0 and for all z, a ∈ B with |a| ≤ 1/2. We
verify this by showing that Va belongs to the Perron-Bremermann class
V(B, φ, f), i.e. Va is a subsolution to the Dirichlet problem.

2.1 Boundary values of Va. Observe that if g ∈ C0,1(B̄), then

(4.3) |g◦Ta(z)−g(z−h)| ≤ ∥g∥C0,1(B̄) ·|Ta(z)−z+h| ≤ c1|a|2∥g∥C0,1(B̄),

where c1 > 0 is a geometric constant. Using Taylor’s expansion we get

g ◦ Ta(z) = g(z − h+O(|a|2)) = g(z) + dg(z).h+O(|a|2)
for g ∈ C1,1(B̄), hence
(4.4) g ◦ Ta(z) + g ◦ T−a(z) ≤ 2g(z) + 2C2|a|,
where C2 = C2(g) depends on the C1,1-norm of g.

Extending φ as a function in C1,1(B̄) and applying (4.4) yields

(4.5) φ ◦ Ta + φ ◦ T−a ≤ 2φ+ 2C2|a|2,
where C2 = C2(φ) depends on the C1,1-norm of φ. We infer

Va(z) ≤ φ+ C2|a|2, ζ ∈ ∂B.

2.2. Estimating the Monge-Ampère measure of Va. We now esti-
mate ∆HVa from below, for H ∈ Ḣ+

n fixed. Observe that

∆H(U ◦ Ta) ≥ (detT ′
a)

2/n (f 1/n ◦ Ta).
where det T ′

a(z) = 1 + (n+ 1)⟨z, a⟩+O(|a|2), hence

(detT ′
a(z))

2/n
= 1 +

2(n+ 1)

n
⟨z, a⟩+O(|a|2).

Since f 1/n ∈ C1,1(B̄), it follows from (4.4) that

f 1/n ◦ Ta(z) = f 1/n(z − h+ o(|a|2)) = f 1/n(z) + ψ1(z, a) +O(|a|2).
setting ψ1(z, a) := df 1/n(z).h. An elementary computation yields

|det T ′
a(z)|2/n(f 1/n ◦Ta(z) ≥ f 1/n(z)− 2(n+ 1)

n
|⟨z, a⟩ψ1(z, a)|−C3|a|2,

and

|⟨z, a⟩ψ1(z, a)| ≤ C3|z| · |a|2 ≤ C3|a|2,
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where C3 > 0 only depends on ∥f 1/n∥C1,1(Ω). Therefore

|det T ′
a(z)|2/n(f 1/n ◦ Ta(z)) ≥ f 1/n(z)− C3|a|2,

hence ∆H(U ◦ Ta) ≥ f 1/n(z)− C3|a|2 and

∆HVa ≥ 2f 1/n − 2C3|a|2.
For |a| ≤ 1/2 we consider the continuous plurisubharmonic function

z 7→ va(z) = Va(z) + C3|a|2(|z|2 − 2).

Observe that va ≤ φ on ∂B and for every H ∈ Ḣ+
n ,

∆Hva =
1

2
∆HVa + C|a|2∆H(|z|2) ≥ f 1/n − C3|a|2 + C3|a|2 ≥ f 1/n.

Thus va ∈ V(Ω, φ, f), hence va ≤ U . Therefore

1

2
Va(z)− C3|a|2 ≤

1

2
Va(z) + C3|a|2(|z|2 − 2) ≤ U(z)

for z ∈ B, hence
U ◦ Ta(z) + U ◦ T−a(z)− 2U(z) ≤ 2C3|a|2,

as claimed.

Step 3: Comparing invariant/usual symmetric differences. We now
compare U ◦ Ta(z) + U ◦ T−a(z) and U(z − h) + U(z + h), where h is
defined by (4.2). Fix K ⊂ B a compact set and |h| small enough.

Applying (4.3) with g = U , z ∈ K and |h| < dist(K, ∂B), we get

U(z − h) + U(z + h)− 2U(z)

≤ U ◦ Ta(z) + U ◦ T−a(z)− 2U(z) + 2c1∥U∥C0,1(B̄)|a|2

≤ (2c1∥U∥C0,1(B̄) + 2C3)|a|2.
Observe that a 7−→ h(a, z) = a−⟨z, a⟩z is a non singular endomor-

phism of Cn which depends smoothly on z ∈ B. The inverse mapping
h 7→ a(h, z) is a linear map with norm less than 1

1−|z|2 since

|h| ≥ |a| − |⟨z, a⟩||z| ≥ |a| − |z|2|a|| ≥ |a|(1− |z|2).
For z ∈ K and |h| ≤ dist(K, ∂B)/2, we infer

U(z + h) + U(z − h)− 2U(z) ≤ C4

(1− |z|2)2
|h|2,

where C4 := (2c1∥U∥C0,1(B̄) + 2C3).
Consider now a convolution with a regularizing kernel χε, ε > 0

small enough. For z ∈ K and |h| small we obtain

Uε(z + h) + Uε(z − h)− 2Uε(z) ≤
C4

(1− (|z|+ ε)2)2
|h|2.

The Taylor expansion of order two of Uϵ yields

D2Uε(z).h
2 ≤ C4

(1− (|z|+ ε)2)2
|h|2 ≤ A|h|2,
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for z ∈ K,h ∈ Cn, where A := C4/dist(K, ∂B)2. Since Uε ∈ PSH(Bε)

D2Uε(z).h
2 +D2Uε(z).(ih)

2 = 4
∑
j,k

∂2Uε

∂zj∂z̄k
.hjh̄k ≥ 0.

Hence for z ∈ K and |h| small enough,

D2Uε(z).h
2 ≥ −D2Uε(z).(ih)

2 ≥ −A|h|2.
Therefore for z ∈ K we have a uniform bound |D2Uε(z)| ≤ A.

The Alaoglu-Banach theorem insures that there exists g ∈ L∞(K)
such that D2Uε converges weakly to g in L∞(K). Since D2Uε → D2U
in the sense of distributions, we infer D2U = g in the sense of dis-
tributions. The second order derivatives of U therefore exist almost
everywhere and are locally bounded in B with

∥D2U∥L∞(K) ≤ A,

where A := C4/dist(K, ∂B)2 and C4 depends on the C0,1 norm of U , the
C1,1 norm of φ and f 1/n. We have thus shown that U ∈ C1,1

loc (B). □

In general U does not belong to C1,1(B̄) as Exercise 4.11 shows.

4.2. Solution to the Dirichlet problem. We now show that the
Perron-Bremermann envelope is the solution to the Dirichlet problem:

Theorem 4.14. Assume 0 ≤ f 1/n ∈ C1,1(B̄) and φ ∈ C1,1(∂B).
Then U = U(B, φ, f) is the unique solution to the Dirichlet problem

(4.6)

 u ∈ PSH(B) ∩ C(B)
(ddcu)n = fβn in B
u = φ in ∂B.

Proof. We already know that U ∈ C1,1
loc (B) ∩ V(B, φ, f) and has

the right boundary values. It remains to show that (ddcU)n = fβn.
Since U ∈ C1,1

loc (B), it suffices to show that for almost every z ∈ B

det

(
∂2U

∂zj∂z̄k
(z)

)
= f(z).

The inequality ≥ holds almost everywhere since U is a subsolution.
Suppose by contradiction that there exists a point z0 ∈ B at which

U twice differentiable and satisfies

det

(
∂2U

∂zj∂z̄k
(z0)

)
> f(z0) + ε,

for some ε > 0. Then for any H ∈ Ḣ+
n ,

(4.7) ∆HU(z0) > (f(z0) + 2ϵ)1/n.

Using the Taylor expansion of U at order 2 at the point z0, we get

U(z) = U(z0) +ReP (z − z0) + L(z − z0) + o(|z − z0|2),
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where P is a complex polynomial of degree 2 and

L(ζ) =
∑
j,k

∂2U

∂zj∂z̄k
(z0)ζj ζ̄k

is the Levi form of U at z0.
Since L is positive, for any 0 < s < 1 close to 1, there exists δ, r > 0

small enough such that B(z0, r) ⋐ B, and for |z − z0| = r,

U(z) ≥ U(z0) +ReP (z − z0) + sL(z − z0) + δ,

Observe that the function defined by

w(z) := U(z0) +ReP (z − z0) + sL(z − z0) + δ

is smooth and plurisubharmonic in Cn.
Then the function

(4.8) v(z) =

{
U(z), z ∈ B \ B(z0, r)
max{U(z), w(z)}, z ∈ B(z0, r)

is plurisubharmonic in B, continuous near ∂B with v = φ in ∂B.
We claim that ∆Hv ≥ f 1/n for all H ∈ Ḣ+

n . Indeed if A is the com-
plex hessian matrix associated to U at z0, we have ∆Hw = s tr(HA).
Lemma 4.8 yields tr(HA) ≥ (detA)1/n, hence by (4.7) for z ∈ B(z0, r),

∆Hw(z) ≥ s(f(z0) + 2ε)1/n ≥ (f(z0) + ε)1/n,

if s < 1 is choosen close enough to 1.
Since f 1/n is continuous in B̄, shrinking r if necessary, can assume

that (f(z0) + ε)1/n ≥ f(z)1/n for z ∈ B(z0, r), hence

∆Hw(z) ≥ f(z)1/n,

pointwise in B(z0, r). It follows therefore from (3.3) that ∆Hv ≥ f 1/n.
We infer v ∈ V(B, φ, f) hence v ≤ U in B. On the other hand

v(z0) = U(z0)+ δ > U(z0), a contradiction. The proof is complete. □

Using an approximation process, we can now solve the Dirichlet
problem in the unit ball with continuous data:

Corollary 4.15. Assume φ ∈ C(∂B) and 0 ≤ f ∈ C(B̄). Then
U = U(B, φ, f) is the solution to Dirichlet problem (4.6).

Proof. Let (fj) be a sequence of smooth positive functions which
decrease to f uniformly on B̄. Fix also φj C

∞-smooth functions in ∂B
such that φj increases to φ uniformly on ∂B.

The upper envelope Uj := U(B, φj, fj) is the unique plurisubhar-
monic solution to the Dirichlet problem (4.6) with boundary data φj

and right hand side fj. Observe that (Uj) is non decreasing in B.
Fix ε > 0 small and set ρ(z) := |z|2 − 1. Note that for k ≥ j,

(ddc(Uk + ερ)n ≥ (ddcUk)
n + εnβn = (fk + εn)βn.
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Since (fk) decreases fo f uniformly in B̄, we can find j0 > 0 such that
fj ≤ fk + εn in B̄ for k ≥ j ≥ j0, hence

(ddc(Uk + ερ)n ≥ fjβ
n.

Since Uk+ε(|z|2−1) = fk ≤ fj in ∂B, it follows from the comparison
principle that Uk+ερ ≤ Uj in B̄. Since Uj ≤ Uk we infer for k ≥ j ≥ j0,

max
B̄

|Uk − Uj| ≤ ε.

The sequence (Uj) therefore uniformly converges in B̄ to a function
u ∈ PSH(B)∩C0(B̄) such that u = φ in ∂B. The uniform convergence
insures that (ddcUj)

n converge to (ddcu)n weakly hence (ddcu)n = fβn.
The comparison principle guarantees that u = U(B, φ, f) is the

unique solution to the Dirichlet problem (4.6). □

5. Strictly pseudo-convex domains

5.1. Continuous densities. We generalize here Corollary 4.15 to
the case when Ω ⋐ Cn is a strictly pseudo-convex domain in Cn.

Theorem 4.16. Assume φ ∈ C(∂Ω) and 0 ≤ f ∈ C(Ω̄). The
envelope U = U(Ω, φ, f) is the unique solution to Dirichlet problem.

Proof. We already know that U ∈ PSH(Ω)∩C0(Ω̄) and satisfies
(ddcU)n ≥ fβn weakly. It remains then to check that (ddcU)n ≤ fβn.

We use the classical balayage technique. Let B ⋐ Ω be an arbitrary
euclidean ball. By Corollary 4.15, we can solve the Dirichlet problem

(ddcu)n = fβn in B and u = U on ∂B.

The comparison principle insures U ≤ u in B. It follows therefore from
Proposition 4.10 that

z 7→ v(z) =

{
u(z) if z ∈ B
U(z) if z ∈ Ω \B

belongs to the class V(Ω, φ, f) and v = U = φ on ∂Ω. We infer v ≤ U ,
hence u = U in B so that (ddcU)n = (ddcu)n = fβn in B. The equality
holds in Ω since B was arbitrary. □

5.2. More general densities. We start by extending Theorem
4.16 to the case when the density is merely bounded:

Theorem 4.17. Assume φ ∈ C(∂Ω) and 0 ≤ f ∈ L∞(Ω). Then
the envelope U(Ω, φ, f) is a bounded plurisubharmonic function in Ω
which is the unique solution to the Dirichlet problem

(5.1)

 u ∈ PSH(Ω) ∩ L∞(Ω)
(ddcu)n = fβn in Ω
limz→ζ u(z) = φ(ζ) for ζ ∈ ∂Ω
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Proof. Let (fj) be a sequence of continuous functions in Ω̄ which
converge to f in L1(Ω) and almost everywhere. Theorem 4.16 yields, for
each j ∈ N, a solution Uj ∈ PSH(Ω)∩C0(Ω̄) such that (ddcUj)

n = fjβ
n

in Ω and Uj = φ in ∂Ω.
Set V0 := U(Ω, φ, 0) and V1 := U(Ω, φ,M), where M is a uniform

L∞-bound for the fj’s. The comparison principle yields V1 ≤ Uj ≤ V0
Hence the Uj’s are uniformly bounded.

Extracting and relabelling we can assume that (Uj) converges in
L1(Ω) and almost everywhere to a bounded plurisubharmonic function
U such that U = (lim supj Uj)

∗ in Ω.
We claim that (Uj) converges to U in capacity. Indeed fix a compact

set K ⊂ Ω and δ, ε > 0. There exists an open set G ⊂ Ω such that
CapΩ(G) < ε and all the function Uj, U are continuous in Ω \ G, by
quasocontinuity. Hartogs lemma yields

lim sup
j→+∞

max
K\G

(Uj − U) ≤ 0,

hence {Uj − U ≥ 2δ} ⊂ G for j > 1 large enough. We infer

lim
j→+∞

CapΩ({Uj − U ≥ 2δ}) = 0.

On the other hand, Lemma 4.18 below shows that for all j ∈ N,

CapΩ({U − Uj ≥ 2δ}) ≤ δ−n

∫
{U−Uj≥δ}

(ddcUj)
n

≤ Mδ−n−1

∫
Ω

(U − Uj)+β
n.

The right hand side converges to 0 since Uj → U in L1, hence

lim
j→+∞

CapΩ({U − Uj ≥ 2δ}) = 0.

Our claim is proved.
We infer (ddcUj)

n → (ddcU)n and (ddcU)n = fβn weakly in Ω.
Since V1 ≤ U ≤ V0, Theorem 4.16 shows that U tends to φ at the
boundary of Ω.

The comparison principle insures that U = U(Ω, φ, f) is the unique
solution to the Dirichlet problem (5.1). □

We need to prove the following lemma which was used in the pre-
vious proof.

Lemma 4.18. Assume u, v are bounded plurisubharmonic functions
such that {u < v} ⋐ Ω. Then for all s, t > 0

tnCapΩ({u− v ≤ −s− t}) ≤
∫
{u−v≤−s}

(ddcu)n

Proof. Fix w ∈ PSH(Ω) s.t. −1 ≤ w ≤ 0, s, t > 0 and note that

{u ≤ v − s− t} ⊂ {u ≤ v − s+ tw} ⊂ {u ≤ v − s} ⋐ Ω.
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The comparison principle thus yields

tn
∫
{u<v−s−t}

(ddcw)n ≤
∫
{u<v−s+tw}

(ddc(v − s+ tw))n

≤
∫
{u<v−s+tw}

(ddcu)n

≤
∫
{u<v−s}

(ddcu)n.

The required estimate follows by taking the sup over all such w’s. □

When the density f is merely in L1
loc(Ω), we can show that the

existence of a subsolution implies the existence of a solution:

Corollary 4.19. Fix φ ∈ C0(∂Ω) and 0 ≤ f ∈ L1
loc(Ω). As-

sume there exists v ∈ PSH(Ω) ∩ L∞(Ω) such that v = φ in ∂Ω and
(ddcv)n ≥ fβn in the weak sense. Then the Perron-Bremermann en-
velope U(Ω, φ, f) is the unique solution to the Dirichlet problem (5.1).

Proof. Set fj := min{f, j}. Then (fj) is a sequence of bounded
densities which increase to f everywhere and in L1

loc(Ω).
Theorem 4.17 guarantees the existence of a unique Uj ∈ PSH(Ω)∩

L∞(Ω) such that (ddcUj)
n = fjβ

n in Ω and Uj = φ in ∂Ω. Set

uφ := U(Ω, φ, 0).

The comparison principle yields v ≤ Uj+1 ≤ Uj ≤ uφ, therefore
(Uj) is uniformly bounded in Ω.

Since (Uj) is non increasing, it converges to a bounded plurisub-
harmonic function U in Ω such that v ≤ U ≤ uφ. The continuity of
the complex Monge-Ampère operator for decreasing sequences insures
(ddcU)n = fβn. The comparison principle implies that U = U(Ω, φ, f)
is the unique solution to the Dirichlet problem (5.1). □

Remark 4.20. The result above is due to Cegrell and Sadullaev
[CS92] who also gave examples of densities 0 ≤ f ∈ L1(Ω) for which
there is no bounded plurisubharmonic subsolution to the Dirichlet prob-
lem (5.1) (see Exercise 4.8).

When 0 ≤ f ∈ Lp(Ω), p > 1, Kolodziej has shown in [Kol98] that
the Dirichlet problem (5.1) has a unique continuous solution. The case
p = 2 was proved earlier by Cegrell and Person [CP92].

The balayage procedure used in the proof of Theorem 4.16 is quite
classical in Potential Theory. It can be be generalized as follows.

Corollary 4.21. Let B ⋐ Ω be a ball and 0 ≤ f ∈ L1(B). Fix
u ∈ PSH(Ω) ∩ L∞

loc(Ω) such that (ddcu)n ≥ fβn in B. There exists a
unique û ∈ PSH(Ω)∩L∞

loc(Ω) such that û = u in Ω\B, u ≤ û in B and
(ddcû)n = fβn in B. If f ∈ C0(B̄) and u ∈ C0(∂B), then û ∈ C0(B̄).
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Proof. Let (φj) a decreasing sequence of continuous function con-
verging to u in B̄. Applying Theorem 4.17 we find Uj ∈ PSH(B) ∩
L∞(B̄) such that Uj = φj in ∂B and (ddcUj)

n = fβn in B.
The comparaison principle insures that u ≤ Uj ≤ Uj+1 in B. There-

fore (Uj) converges to a plurisubharmonic function U in B such that
u ≤ U ≤ Uj and (ddcU)n = fβn in B. Moreover

U∗(ζ) := lim sup
B∋z→ζ

U(z) ≤ lim sup
B∋z→ζ

Uj(z) = φj(ζ)

for any ζ ∈ ∂B, hence U∗(ζ) ≤ u(ζ) in ∂B.
The function û defined by û = u in Ω\B and û = U in B is therefore

plurisubharmonic in Ω and has all the required properties. □
5.3. Stability estimates. We address here the following issue: if

f1 and f2 (resp. φ1 and φ2) are close (in an appropriate sense), does it
imply that so are U(f1, φ2) and U(f2, φ2) ?

Proposition 4.22. Fix φ1, φ2 ∈ C0(∂Ω) and f1, f2 ∈ C0(Ω). The
solutions U1 = U(Ω, φ1, f1) , U2 = U(Ω, φ2, f2) satisfy

(5.2) ∥U1 − U2∥L∞(Ω) ≤ R2∥f1 − f2∥1/nL∞(Ω)
+ ∥φ1 − φ2∥L∞(∂Ω)

where R := diam(Ω). In particular if φ ∈ C0(∂Ω) and f ∈ C0(Ω), then

(5.3) ∥U(Ω, φ, f)∥L∞(Ω) ≤ R2∥f∥L∞(Ω) + ∥φ∥L∞(∂Ω.

Proof. For z0 ∈ Ω and R > 0 such that B(z0, R) ⊂ Ω we set

v1(z) = ∥f1 − f2∥1/nL∞(Ω)
(|z − z0|2 −R2) + U2(z)

and
v2(z) = U1(z) + ∥φ1 − φ2∥L∞(∂Ω).

Observe that v1, v2 ∈ PSH(Ω)∩C(Ω), v1 ≤ v2 in ∂Ω and (ddcv1)
n ≥

(ddcv2)
n in Ω. It follows therefore from the comparison principle that

v1 ≤ v2 on Ω. We infer

U2 − U1 ≤ R2∥f1 − f2∥1/nL∞(Ω)
+ ∥φ1 − φ2∥L∞(∂Ω)

The inequality (5.2) follows by reversing the roles of U1 and U2. □
These stability estimates show that the operator

UΩ : C0(∂Ω)× L∞
+ (Ω) −→ PSH(Ω) ∩ L∞(Ω)
(φ, f) 7−→ U(Ω, φ, f)

is continuous for the corresponding topologies. Here L∞
+ (Ω) denotes

the set of all non-negative measurable and bounded densities in Ω.
The reader will check in Exercise 4.13 that this stability property does
not hold for arbitrary measures.

Remark 4.23. Finer stability estimates have been established by
Cegrell and Persson [CP92] when f ∈ L2(Ω) and by Kolodziej [Kol02]
when f ∈ Lp(Ω), p > 1 (see also [GKZ08]).
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5.4. More general right hand side. We now allow the right
hand side to depend on the unknown function, following Cegrell in
[Ceg84]. We consider the Dirichlet problem.

(5.4)

 u ∈ PSH(Ω) ∩ L∞(Ω)
(ddcu)n = eufβn in Ω
limz→ζ u(z) = φ(ζ) in ∂Ω

where φ ∈ C(∂Ω) and 0 ≤ f ∈ L∞(Ω).
The class W(Ω, φ, f) of subsolutions to this Dirichlet problem is

the set of all functions w ∈ PSH(Ω) ∩ L∞(Ω) such that w∗ ≤ φ in ∂Ω
and (ddcw)n ≥ ewfβn in Ω. The corresponding upper envelope is

(5.5) W (Ω, φ, f) = W (z) := sup{w(z);w ∈ W(Ω, φ, f)}.

Theorem 4.24. Fix φ ∈ C(∂Ω) and 0 ≤ f ∈ L∞(Ω). Then
W (Ω, φ, f) is the unique solution to the Dirichlet problem (5.4).

Proof. We can always assume that φ ≤ 0 in ∂Ω. Let ρ be a
defining function for Ω and u0 := U(Ω, φ, 0). The function v0 := Aρ+u0
is a subsolution to the Dirichlet problem (5.4) if we choose A > 1 so
large that An(ddcρ)n ≥ fβn in Ω. Thus W(Ω, φ, f) is non empty.

We prove that the envelope W (Ω, φ, f) is the solution by using
Theorem 4.17 and applying the Schauder fixed point theorem. Set

C := {w ∈ PSH(Ω) ∩ L∞(Ω); v0 ≤ w ≤ u0}.

Observe that C is compact and convex in L1(Ω). It follows from
Theorem 4.17 that for each w ∈ C there exists a unique function v =
S(w) ∈ PSH(Ω) ∩ L∞(Ω) such that v = φ in ∂Ω and

(ddcv)n = ewfβn in Ω.

Observe that (ddcv)n ≤ fβn ≤ (ddcv0)
n, as w ≤ 0. Since v = v0 = u0

in ∂Ω, the comparison principle yields v0 ≤ v ≤ u0, hence S(w) ∈ C.
We claim that the operator S : C −→ C is continuous for the L1-

topology. Indeed assume (wj) ∈ CN converges to w ∈ C in L1(Ω) and
set vj := S(wj). Extracting and relabelling, we can assume that vj → v
in C and wj → w almost everywhere.

The sequence (vj) converges to v in capacity. Indeed fix δ > 0.
Since (ddcvj)

n = ewjfβn and wj ≤ 0, Lemma 4.18 yields for all j ∈ N,

CapΩ({v − vj ≥ 2δ}) ≤ δ−n

∫
{v−vj≥δ}

(ddcvj)
n

≤ δ−(n+1)∥f∥L∞(Ω)

∫
Ω

(v − vj)+β
n,

The right hand side converges to 0 for vj → v in L1(Ω), hence the
claim. We infer (ddcvj)

n → (ddcv)n weakly in Ω.
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On the other hand (wj) is uniformly bounded in Ω and ewjf → ewf
in L1(Ω), hence (ddcv)n = ewfβn. Since v0 ≤ v ≤ u0 in Ω it follows
that v = φ in ∂Ω. The comparison principle now yields v = S(w).

It follows that S(wj) → S(w) in L1(Ω) hence S : C −→ C is con-
tinuous. Schauder fixed point theorem insures that S admits a fixed
point w ∈ C, i.e. w is a solution to the Dirichlet problem (5.4).

The uniqueness of solutions to the Dirichlet problem (5.4) is a conse-
quence of the lemma to follow. It guarantees that w = W (Ω, φ, f). □

Lemma 4.25. Assume 0 ≤ f1 ≤ f2 and w1, w2 ∈ PSH(Ω)∩L∞(Ω)
are such that (ddcw1)

n ≤ ew1f1β and (ddcw2)
n ≥ ew2f2 in Ω.

If w2 ≤ w1 on ∂Ω then w2 ≤ w1 in Ω.

Proof. We infer from f1 ≤ f2 that∫
{w1<w2}

ew2f1β
n ≤

∫
{w1<w2}

ew2f2β
n =

∫
{w1<w2}

(ddcw2)
n.

The comparison principle thus yields∫
{w1<w2}

(ddcw2)
n ≤

∫
{w1<w2}

(ddcw1)
n ≤

∫
{w1<w2}

ew1f1.

Therefore
∫
{w1<w2} e

w2f1β
n ≤

∫
{w1<w2} e

w1f1β
n, hence∫

{w1<w2}
(ew2 − ew1)f1β

n = 0 and 1{w1<w2}(e
w2 − ew1) = 0,

almost everywhere with respect to µ1 := f1β
n.

Since (ddcw1)
n ≤ µ1 we infer w2 ≤ w1 almost everywhere for

(ddcwn
1 ). The domination principle now yields w2 ≤ w1 everywhere. □

5.5. Further results. We mention here without proof a few im-
portant results for the sake of completeness.

Theorem 4.26 (Krylov). Let Ω ⊂ Cn be a smoothly bounded strictly
pseudoconvex domain and fix φ ∈ C3,1(∂Ω). The unique plurisubhar-
monic solution U = UΩ,φ,0 of the homogeneous complex Monge-Ampère
equation in Ω with boundary values φ is C1,1-smooth on Ω.

This result (together with many other regularity results) has been
obtained by Krylov by probabilistic methods, in a series of articles (see
notably [Kry89]). We refer the interested reader to the lecture notes
by Delarue [Del12] for an overwiev of these techniques.

Theorem 4.27 (Caffarelli-Kohn-Nirenberg-Spruck). Let Ω ⊂ Cn be
a smoothly bounded strictly pseudoconvex domain and fix φ ∈ C∞(∂Ω).
If the density f is smooth and strictly positive on Ω, then the unique
solution U = UΩ,φ,f is smooth up to the boundary.
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This result (together with many others) has been obtained by Caf-
farelli, Kohn, Nirenberg and Spruck in [CKNS85]. We refer the in-
terested reader to the lecture notes by Boucksom [?] for an up-to-date
presentation.

6. Exercises

Exercise 4.1. Let µ be a probability measure with compact support
in RN .

1. Show that the function

x ∈ RN 7→ Uµ(x) :=

∫
Rn

KN(x− y)dµ(y) ∈ R,

is subharmonic and satisfies the Poisson equation ∆Uµ = µ in RN .

2. Let D ⋐ RN be a domain and u a subharmonic function in a
neighborhood of D. Show that u can be written, in D,

u = Uµ + hD,

where µ is the Riesz measure of u and hD is harmonic in D.

Exercise 4.2. Let u ∈ SH(B) ∩ C0(B̄). Show that for all x ∈ B,

u(x) =

∫
S
u(y)P (x, y)dσ(y) +

∫
B
G(x, y)dµu(y),

where µu := ∆u is the the Riesz measure of u.

Exercise 4.3. Let φ be a continous function on ∂B. Show that

Pφ(x) :=

∫
|y|=1

φ(y)P (x, y)dσ(y), x ∈ B,

defines a harmonic function in the ball B, which is continuous on B̄
and satisfies Pφ(x) = φ(x) for x ∈ S.

Exercise 4.4. Let T : Cn → Cn be a C-linear isomorphism and
q : Cn

ζ → Cn
z be a C2-smooth function in a neighborhood of a point z0.

Set z = T (ζ) and qT (ζ) := q(z) = q(T (ζ).

1) Check that qT is C2-smooth near ζ0 := T−1(z0) and

∆qT (ζ) =
n∑

j=1

∂2qT (ζ)

∂ζj∂ζ̄k
= tr(T ∗Q(z)T ),

where T ∗ denotes the complex conjugate transpose of T := (
∂zj
∂ζk

) and

Q(z) := ( ∂2q
∂zj∂z̄k

(z)) is the complex hessian of q at z.

2) Fix H ∈ Ḣn. Show that there exists a unitary complex matrix U
such that U∗HU = D is a diagonal matrix with positive entries. Set
T = D1/2U . Check that T is hermitian, T ∗T = H and

tr(T ∗AT ) = tr(HT−1AT ) = tr(HA)
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for all hermitian matrix A.

3) Apply 2) with A(z) the complex hessian of q at z = T (ζ) to get

∆qT (ζ) = ∆Hq(z).

Exercise 4.5. Let µ be a non-negative Borel measure in Ω ⊂ Cn

such that there exists u ∈ PSH(Ω) ∩ L∞(Ω) with µ ≤ (ddcu)n in Ω.
Show that that PSH(Ω) ⊂ L1

loc(µ) and for any compact subsets
K ⊂ E ⊂ Ω with K ⊂ E◦, there exists C > 0 such that∫

K

|V |dµ ≤ C

∫
E

|V |dλ,

for all V ∈ PSH(Ω), where λ is the Lebesgue measure on Ω.

Exercise 4.6. Let u be a plurisubharmonic function in Ω ⋐ Cn.
1) Assume that there exists constants A, δ > 0 such that

u(z + h) + u(z − h)− 2u(z) ≤ A∥h∥2,
for all 0 < ∥h∥ < δ and for all z ∈ Ω such that dist(z, ∂Ω) > δ.

Show that u is C1,1-smooth and its second derivatives, which exist
almost everywhere, satisfy ∥D2u∥L∞(Ω) ≤ A.

2) Show that the Monge-Ampère measure (ddcu)n is absolutely con-
tinuous with respect to the Lebesgue measure dV in Ω, with

(ddcu)n = cn det

(
∂2u

∂zj∂z̄k

)
dV,

for some constant cn > 0. Check that this last result actually holds
whenever u belongs to the Sobolev space W 2,n

loc .

Exercise 4.7. Let B denote the unit ball. For a ∈ B, we set

Ta(z) =
Pa(z)− a+

√
1− |a|2(z − Pa(z))

1− ⟨z, a⟩
; Pa(z) =

⟨z, a⟩
|a|2

a

where ⟨·, ·⟩ denote the Hermitian product in Cn.
Check that Ta is a holomorphic automorphism of the unit ball such

that Ta(a) = 0 and that T0 is the identity.

Exercise 4.8. Fix α > 1 and set

fα(z) :=
1

|z|2n(1− log |z|)α
,

1. Check that fα ∈ L1(B) \ Lp(B) for all p > 1 and show that there
is no u ∈ PSH(B) ∩ L∞(B) such that (ddcu)n ≥ fβn in B.

2. Show that there exists a unique radial plurisubharmonic function
U in B which is smooth in B \ {0} and such that U(z) = 0 in ∂B,
(ddcU)n = fβn in B and U(0) = −∞.

Exercise 4.9. Give an example of a non-negative Borel measure
µ on Ω such that the class B(Ω, φ, f) is non empty but contains no
element u such that limu(z) = φ(ζ) for all ζ ∈ ∂Ω (see [CS92]).
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Exercise 4.10. Let h : Ω −→ R be an upper semi-continuous
function. The plurisubharmonic envelope of h is defined, for z ∈ Ω, by

PΩh(z) := sup{u(z);u ∈ PSH(Ω);u ≤ h in Ω}.

1. Show that PΩh is a plurisubharmonic function in Ω. Observe
that PΩh = h is h is plurisubharmonic in Ω.

2. Show that if h : Ω −→ R is continuous then PΩh is continuous
in Ω and satisfies

1{PΩh<h}(dd
cPΩh)

n = 0.

3. Show that if Ω = B and h is locally C1,1, then PBh is locally C1,1

in B and satisfies the Monge-Ampère equation:

(ddcPBh)
n = 1{PBh=h}(dd

ch)n.

Exercise 4.11. Let B ⊂ C2 the unit ball. Fix α > 0 and set

φ(z, w) := (1 +Rez)α for (z, w) ∈ ∂B.

Observe that the function φ is C∞-smooth in ∂B, except at the point
(−1, 0) and near this point we have 1 + ℜz = O(|w|2 + (ℑz)2).

1) Assume that α := 1+ ϵ with 0 < ε ≤ 1. Show that φ ∈ C2,2ϵ(∂B)
if ε ≤ 1/2 and φ ∈ C3,2ε−1(∂B) if 1/2 < ε ≤ 1.

2) Observe that the function defined by U(z, w) := (1 + Rez)1+ϵ,
(z, w) ∈ B, is plurisubharmonic and continuous in B̄ and that it is the
unique solution to the homogeneous Dirichlet problem u ∈ PSH(B) ∩ C(B)

(ddcu)2 = 0 in B
u = φ in ∂B

3) Check that U ∈ C1,ϵ(B̄) ∩ C∞(B). When ε = 1/2, verify that
φ ∈ C2,1(∂B) and U is no better than C1,1/2.

For 1/2 < α < 1 show that Theorem 4.12 is optimal: the solution
is no better than Lipschitz on B̄ when φ in no better than C1,1 on ∂B.

Exercise 4.12. Let f ∈ Lp(B), with p > 1, be a radial non-negative
desnity and φ ≡ 0 in ∂B.

1) Prove that the solution U of the Dirichlet problem (ddcU)n = fβn

with U = 0 on ∂B is radial.

2) Show that U is given, for r := |z| < 1, by

U(r) = −
∫ 1

r

2

t

(∫ t

0

ρ2n−1f(ρ)dρ

)1/n

dt,

3) Check that U ∈ C0,2− 2
p (B̄) for 1 < p < 2 hence U ∈ C0,1(B̄) for

p ≥ 2 (see [Mon86] for more details).
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Exercise 4.13. Let φj be a sequence of uniformly bounded plurisub-
harmonic functions in the unit ball B of Cn such that φj → φ in L1 but
(ddcφj)

n does not converge to (ddcφ)n. By modifying φj near ∂B, con-
struct a sequence of probability measures µj in B and plurisubharmonic
functions ψj in B such that

• the ψj’s are uniformly bounded and continuous in B;
• the ψj’s are solutions of the Dirichlet problem Dir(B, 0, µj);
• the sequence (µj) weakly converges to a probability measure µ;
• (ψj) does not converge to the solution of Dir(B, 0, µ).

This shows that the stability property obtained in Proposition 4.22
does not hold in general. We refer the interested reader to [CK94,
CK06] for more information.

Exercise 4.14. Let K be a compact subset of Cn. Recall that the
polynomial hull of K is

K̂ := {z ∈ Cn ; |P (z)| ≤ sup
K

|P | for all polynomials P}.

Fix Ω ⊂ Cn a bounded pseudoconvex domain, ϕ ∈ C∞(∂Ω) and set

F := {(z, w) ∈ ∂Ω× C ; |w| ≤ exp(−ϕ(z))} .
Show that

F̂ = {(z, w) ∈ ∂Ω× C ; |w| ≤ exp(−u(z))} ,
where u = UΩ,ϕ,0 is the unique maximal plurisubharmonic function in
Ω with ϕ as boundary values.
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