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Abstract

Lecture notes on behaviour of plurisubharmonic functions near
their −∞-points. CIMPA School in Sénégal, 20/11/2017 – 2/12/2017.

A model example of a plurisubharmonic (psh) function is u = log |f | for a
holomorphic mapping f , and the behaviour of the mapping f near its zero set
Zf corresponds to the behaviour of general psh functions u near the points
where u = −∞ (points of their singularities).

Considered as distributions, the functions log |f | serve as potentials for
the sets Zf . In the simplest case when f is a holomorphic function, the tran-
sition f 7→ Zf can be achieved by applying the Laplace operator to log |f |,
which gives a measure supported by Zf with density equal to the multiplic-
ity of the function along the corresponding component of its zero set. Next
step is considering this as the integration current [Zf ] (with the multiplicities
taken into account). The approach works in the general situation as well.
In 1957, Pierre Lelong proved that the trace measure of any closed positive
current has density at every point of its support. The main objects of his
study were integration currents over analytic varieties; ten years later, the
densities for this case were shown to coincide with the multiplicities of the
varieties, and since then they have got the name Lelong numbers [Th67]. The
notion has turned out to be of great importance. In particular, it provides
a powerful link between analytic and geometric objects of modern complex
analysis. See Lelong’s view of the subject in [Le94], [Le95]; a collection of
his relevant papers is presented in [Le98].

Further developments in the field rest mainly on technique of Monge-
Ampère operators, the key contribution being made by Demailly, see [Dbook].
Among various applications we mention those to algebraic geometry and
number theory.
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The lectures gives an introduction to central topics of the theory of sin-
gularities of psh functions (psh singularities, for brief), by which we mean
behavior of the functions/currents near their singularity points rather than
the behavior of the singularity sets themselves (although the latter will nec-
essarily come into the picture). We are mainly concerned here with various
characteristics of the singularities, such as Lelong numbers and their general-
izations (in particular, to those for positive closed currents), local indicators,
log canonical thresholds, and relations between them.

Basic notions on psh functions and positive currents are assumed; the
reader can consult [B93], [B lLN1], [B lLN2], [GuZe17], [H94], [K00a], [Kl91],
[Ko98], [Le69], [LeGr86].
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1 Lelong numbers for psh functions

Here we introduce Lelong numbers for psh functions and describe its elemen-
tary properties. Sections 1.1 – 1.4 contain standard facts that can be found,
for example, in [B lLN1], [GuZe17], [H94], [Le98], [LeGr86]; for Sections 1.5
and 1.6, see [K94] and [LeR99], respectively.

1.1 Psh functions

Since we will be mostly considering a local situation, we restrict ourselves
to functions on domains of Cn. Throughout the exposition, Ω is a bounded
domain in Cn, and u is a plurisubharmonic (psh) function in Ω, i.e., an
upper semicontinuous function whose restriction to each complex line L is
subharmonic in Ω ∩ L. The class of all psh functions in Ω is denoted by
PSH(Ω). Any psh function is locally integrable, and the topology of PSH(Ω)
is generated by L1

loc-convergence (equivalently, by the weak convergence on
compactly supported, continuous – or smooth – functions) .
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Denotation 1.1.1 For any r > 0 and p ∈ N, we set:
Br(x) = {x ∈ Cn : |x| < r}, Sr(x) = ∂Br(x), Br := Br(0), Sr := Sr(0);
τp = πp/p! is the 2p-volume of the unit ball in Cp;
ωp = 2πp/(p− 1)! is the (2p− 1)-volume of the unit sphere in Cp;
dS is the Lebesgue measure on smooth real hypersurfaces in Cn.

1.2 Definition of Lelong number and elementary prop-
erties

Denotation 1.2.1 Given u ∈ PSH(Ω), x ∈ Ω, and t < log dist (x, ∂Ω),
denote

Λ(u, x, t) = sup {u(z) : z ∈ Bet(x)},
which is the same as the maximum of u on Set , and

λ(u, x, t) = ω−1
n

∫
S1
u(x+ z et) dS(z).

Some standard facts of theory of psh functions:

Proposition 1.2.2 Let u ∈ PSH(Ω). Then

(i) with t fixed, the functions x 7→ Λ(u, x, t) and x 7→ λ(u, x, t) are contin-
uous and psh in x;

(ii) with x fixed, the functions t 7→ Λ(u, x, t) and t 7→ λ(u, x, t) are convex
and increasing in t;

(iii) u(x) ≤ λ(u, x, t) ≤ Λ(u, x, t).

Since psh functions are locally integrable, it is possible to apply the ma-
chinery of differential operators. Let

∆ = 4
∑
k

∂2

∂zk∂z̄k

be the Laplace operator, then ∆u is a positive measure (which is, up to a
constant factor, the Riesz measure of u considered as a subharmonic function
in R2n). Denote

σu(x, r) =
1

2π

∫
Br(x)

∆u.
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Proposition 1.2.3

σu(x, r)

τn−1r2n−2
=
∂λ(u, x, log r)

∂ log r
, (1.2.1)

∂/∂ log r being understood as the left derivative.

Proof. Green’s formula. �

Definition 1.2.4 Since λ(u, x, t) is convex and increasing, the right-hand
side of (1.2.1) is increasing in r and so is its left-hand side, hence there exists
the limit

ν(u, x) := lim
r→0

σu(x, r)

τn−1r2n−2
, (1.2.2)

the Lelong number of u at x.

In other words, the Lelong number of u is the (2n−2)-dimensional density
of its Riesz measure at x. When n = 1, it is precisely the mass charged by
the Riesz measure of u at x.

More elementary representations of ν(u, x) are in terms of the asymptotic
behaviour of u near x – namely, as the slope of the convex functions λ(u, x, t)
and Λ(u, x, t) at −∞. To this end, we need a simple fact (repeatedly used in
the future):

Lemma 1.2.5 (slope lemma) If g(t) is an increasing convex function on an
interval I ⊂ R, then the ratio

g(t)− g(t0)

t− t0
, t0 ∈ I,

increases in t.

Proof. Direct calculation. �

Theorem 1.2.6 For any psh function u,

ν(u, x) = lim
t→−∞

λ(u, x, t)

t
= lim

t→−∞

Λ(u, x, t)

t
. (1.2.3)
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Proof. (1.2.1), (1.2.2), slope lemma, and Harnack’s inequality. �

Note that u(x) = −∞ does not imply ν(u, x) > 0. This happens if and
only if the behavior of u(z) near x is controlled by log |z − x|:

Corollary 1.2.7

ν(u, x) = lim inf
z→x

u(z)

log |z − x|
= sup {ν > 0 : u(z) ≤ ν log |z−x|+O(1), z → x}.

Furthermore, for any subdomain Ω′ ⊂⊂ Ω containing x there exists a con-
stant C such that

u(z) ≤ ν(u, x) log |z − x|+ C, z ∈ Ω′. (1.2.4)

Proof. The first line is just a reformulation of (1.2.3). To prove the second
statement, let x = 0. By the scaling z 7→ tz, t > 0, one can assume B1 ⊂ Ω′.
Choose C > 0 such that u(z) < C on ∂Ω′. Then for any ε > 0 one can find a
neighborhood ω of x where u ≤ u′ := (ν(u, 0) − ε) log |z|; in particular, this
is true on ∂ω. Thus we have u− C ≤ u′ on ∂Ω′′, where Ω′′ := Ω′ \ ω. Since
the function u′ is a maximal psh function1 on the open set Ω′′, this implies
u − C ≤ u′ on Ω′′ and thus on the whole Ω′, which in view of the abtrary
choice of ε gives us (1.2.4). �

The two representations in Theorem 1.2.6 imply nice properties of the Le-
long number as a functional on psh singularities. Denote PSHx the collection
of all psh functions (germs) at the point x.

Corollary 1.2.8 Let uk be a finite collections of psh functions uk ∈ PSHx.
Then

ν

(∑
k

uk, x

)
=
∑
k

ν(uk, x)

and
ν
(

max
k

uk, x
)

= min
k

ν(uk, x).

1Recall that u ∈ PSH(D) is maximal on D if for any D′ ⊂⊂ D the condition v ≤ u on
D \D′ for v ∈ PSH(D) implies v ≤ u on the whole D.
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More difficult results are upper semicontinuity of ν(u, x) as a function of
x and its invariance with respect to the choice of coordinates; we will prove
this later as consequences of more general statements for generalized Lelong
numbers of currents with respect to psh weights.

Even more complicated is the celebrated Siu’s analyticity theorem.

Definition 1.2.9 For u ∈ PSH(Ω), denote

Ec(u) = {x ∈ Ω : ν(u, x) ≥ c}, c > 0,

the upperlevel sets for the Lelong numbers.

Theorem 1.2.10 (Siu) Ec(T ) is an analytic variety in Ω.

We postpone its proof until we get ready.

1.3 Examples

The following can be easily derived from Theorem 1.2.6.

(a) If u(z) = log |z|, then ν(u, 0) = 1.

(b) Let u(z) = log |f(z)| and f : Ω → C be a holomorphic function,
f(x) = 0. Then ν(u, x) = m, the multiplicity (vanishing order) of f at x
(the least degree of a monomial in the Taylor expansion of f near x).

(c) If f = (f1, . . . , fN) : Ω → CN is a holomorphic mapping, f(x) = 0,
and u(z) = log |f(z)| = 1

2
log
∑

k |fk|2, then

ν(u, x) = min
k

mk,

where mk are the multiplicities of the zeros of the components fk of the
mapping f at x.

1.4 Lelong numbers of slices and pull-backs

Fix x ∈ Ω. Given y ∈ Cn, let L be the complex line through x and y, and
let uy be the restriction of u to ΩL = Ω ∩ L (the slice of u on L):

uy(ζ) := u(x+ ζy) ∈ SH(ΩL). (1.4.5)
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Theorem 1.4.1 ν(uy, 0) ≥ ν(u, x) for all y ∈ Cn, and ν(uy, 0) = ν(u, x) for
all y outside a pluripolar subset A of Cn.

Proof. The first statement is evident in view of (1.2.3). To prove the second
one, assume u(x) = −∞ and consider the family of functions

uζ(y) = −u(x+ ζy)

log |ζ|
,

psh in y and negative on any ball Br for 0 < |ζ| < δr < 1. Therefore, the
upper semicontinuous regularization v∗(y) of the function

v(y) = lim sup
ζ→0

uζ(y)

is a negative psh function on Cn and thus a constant, v∗(y) ≡ C. To find
the constant C, note first that v(y) = −ν(vy, 0) ≤ −ν(u, x) for all y 6= 0.
Furthermore, since

ν(u, x) = ω−1
n

∫
S1
ν(uy, 0) dS(y), (1.4.6)

we get C = −ν(u, x). Finally, as is known, the set {y : v(y) < v∗(y)} is
pluripolar2 in Cn. �

Let now f be a holomorphic mapping Ω′ → Ω with f(x′) = x, and f ∗u
be the pull-back of a function u ∈ PSH(Ω), that is, (f ∗u)(z) = u(f(z)).

It is easy to see that

ν(f ∗u, x′) ≥ ν(u, x).

A (non-elementary) relation in the opposite direction is given by

Theorem 1.4.2 [F99], [K00b] If f(U) has non-empty interior for every
neighbourhood U of x′, then there exists a constant C, independent of u,
such that ν(f ∗u, x′) ≤ Cν(u, x) for any function u plurisubharmonic in a
neighbourhood of x. No such bound is possible if f(U) has no interior points
for some neighbourhood U of x′.

2A set E ⊂ Ω is prulipolar if there exists v ∈ PSH(Ω), v 6≡ −∞, such that v|E = −∞.
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1.5 Directional Lelong numbers

More detailed information on behavior of a psh function near its singularity
point can be obtained by comparing it with convex functions in Rn (rather
than with convex functions on R).

Denotation 1.5.1 Given x ∈ Ω and vector a = (a1, . . . , an) ∈ Rn, one
considers the polydisk characteristics

λ(u, x, a) := (2π)−n
∫

[0,2π]n
u(xk + eak+iθk) dθ,

Λ(u, x, a) := sup {u(z) : z ∈ Ta(x)},

where
Ta(x) = {z : |zk − xk| = eak , 1 ≤ k ≤ n}.

Similarly to λ(u, x, t) and Λ(u, x, t) with t ∈ R, these functions are convex
in a and increasing in each ak,

u(x) ≤ λ(u, x, a) ≤ Λ(u, x, a),

and λ(u, x, a), Λ(u, x, a)→ u(x) as ak → −∞, 1 ≤ k ≤ n. This justifies

Definition 1.5.2 [K87], [K94] Given a positive vector a ∈ Rn
+, there exist

the limits

lim
t→−∞

λ(u, x, ta)

t
= lim

t→−∞

Λ(u, x, ta)

t
=: ν(u, x, a), a ∈ Rn

+, (1.5.7)

and the value ν(u, x, a) is called the directional (or Kiselman’s) Lelong number
in the direction a.

Proposition 1.5.3 Let 1 = (1, . . . , 1), then ν(u, x) = ν(u, x,1).

Proof. Λ(u, x, t) ≤ Λ(u, x, t1) ≤ Λ(u, x, t+ 1
2

log n). �

Example 1.5.4 Let u(z) = log |f(z)| with f ∈ Ox. In a neighborhood of x,

f(z) =
∑
J∈ωx

cJ(z − x)J , cJ 6= 0,
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where ωx ⊂ Zn+. Then

ν(u, x, a) = inf {〈a, J〉 : J ∈ ωx}. (1.5.8)

Indeed, denote the right hand side of (1.5.8) by I. Then

Λ(u, x, ta) = sup
θ∈[0,2π]n

log

∣∣∣∣∣∑
J∈ωx

cJ exp[〈ta, J〉+ i〈θ, J〉]

∣∣∣∣∣
= t I + sup

θ
log

∣∣∣∣∣∑
J∈ω0

cJ exp[〈ta, J〉 − I + i〈θ, J〉]

∣∣∣∣∣
and therefore, t−1Λ(u, 0, ta)→ I as t→ −∞.

1.6 Local indicators

The notion of local indicator was introduced in [LeR99]. Let u ∈ PSHx. We
consider the directional Lelong numbers ν(u, x, a) at the x as functions of
a ∈ Rn

+, and we transform them to functions in the unit polydisk Dn:

Definition 1.6.1 The function

ψu(s) := −ν(u, x,−s), s ∈ Rn
−,

is non-positive, convex in s and increasing in each sk, so

Ψu,x(z) := ψu(log |z1|, . . . , log |zn|)

is psh in Dn
∗ := {z : 0 < |zk| < 1, 1 ≤ k ≤ n} and thus extends to a (unique)

psh function in the unit polydisk Dn, the local indicator of u at x.
When x = 0, we write it simply Ψu.

It is easily checked that the function ψu is positive homogeneous,

ψu(c s) = c ψu(s) ∀c > 0, s ∈ Rn
−. (1.6.9)

Proposition 1.6.2 The indicator Ψu is a maximal psh function on Dn
∗ .
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Proof. Let y ∈ Dn
∗ have coordinates rke

iθk 6= 0. Consider the holomorphic
curve λ : ω → Γy ⊂ Cn on a small neighborhood ω of 1 ∈ C, such that

λk(ζ) = rζke
iθk . The function λ∗Ψu ∈ SH(ω) depends only on Re ζ and

satisfies λ∗Ψu(c ζ) = c λ∗Ψu(ζ) for all c > 0. It is then linear and thus
harmonic on ω. This implies, since λ(1) = y, maximality of Ψu on Dn

∗ . �

Note that ΨΨu = Ψu, which means that Ψu has the same directional
Lelong numbers as the function u.

The following bound is a refinement of u(z) ≤ ν(u, 0) log |z|+ C.

Theorem 1.6.3 For any function u ∈ PSH0,

u ≤ Ψu + C (1.6.10)

near the origin. More generally, any u ∈ PSHx satisfies

u(z) ≤ Ψu,x(z − x) + C

near x.

Proof. By the slope lemma, for any s ∈ Rn
− and t < t0 < 0, we have

Λ(u, 0,−ts)− Λ(u, 0,−t0s)
t− t0

≥ −ψu(s),

which implies (1.6.10). �

Examples 1.6.4 1) For u(z) = log |z|, Ψu(z) = supk log |zk|.
2) The functions

ϕa(z) := max
k
a−1
k log |zk|, ak > 0, (1.6.11)

are their own indicators.

3) Let u = log |f |, f : Ω→ Cm, consider the set

ω0 = {J ∈ Zn+ :
∑
j

∣∣∣∣∂Jfj∂zJ
(0)

∣∣∣∣ 6= 0}. (1.6.12)

As follows from (1.5.8), Ψu(z) = sup {log |zJ | : J ∈ ω0}.
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2 Lelong numbers for positive closed currents

Up to this moment, we developed an approach to Lelong numbers based on
asymptotic properties of psh functions. More information can be obtained
by considering them as densities of the Riesz measures. To do this, the mea-
sures should be viewed as the trace measures of the corresponding positive
closed currents of degree (1, 1). This approach can be extended to currents
of higher degrees. One of the motivations for such an extension is as follows.
When u = log |f | and f : Ω → C, the Lelong number of u at a point x is
just the multiplicity of the zero of f at x, while the multiplicities of holomor-
phic mappings can be characterized as Lelong numbers of currents of higher
degrees.

So we pass to Lelong numbers for positive closed currents, starting with
recalling some basic notions of the theory of currents. The subject of Sections
2.1 – 2.4 is treated, e.g., in [B lLN1], [GuZe17], [H94], [Kl91], [Le69], [LeGr86],
[Ko98]. Sections 2.5 – 2.8 are taken mainly from [D93] (which is actually
Chapter III of [Dbook]). More information on Lelong numbers of the currents
will be presented later on.

2.1 Positive closed currents

Here are some denotations and basics concerning positive closed currents.

Denotation 2.1.1 Let Ω ⊂ Cn and p, q ≤ n.
D(Ω) = C∞0 (Ω) is the space of smooth functions compactly supported in Ω.
Dp,q(Ω) is the space of smooth compactly supported differential forms φ of
bidegree (p, q) on Ω:

φ =
∑

|I|=p,|J |=q

φIJdzI ∧ dz̄J , φIJ ∈ D(Ω),

with the topology of C∞-convergence.

The operator ∂ : Dp,q(Ω)→ Dp+1,q(Ω) is defined by

∂φ =
∑
I,J

∑
1≤k≤n

∂φIJ
∂zk

dzk ∧ dzI ∧ dz̄J ,
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and ∂̄ : Dp,q(Ω)→ Dp,q+1(Ω) is given by

∂̄φ =
∑
I,J

∑
1≤k≤n

∂φIJ
∂z̄k

dz̄k ∧ dzI ∧ dz̄J .

The operators

d = ∂ + ∂̄, dc =
∂ − ∂̄
2πi

are real, and ddc = i
π
∂∂̄. (There is no general convention on normalizing the

operator dc, some authors use dc = i(∂̄−∂); we prefer the above one to avoid
extra factors (2π)p in the sequel.)

By Stokes’ theorem, ∫
D

dφ = −
∫
∂D

φ

for any domain D ⊂ Ω and form φ such that dφ ∈ Dn,n(Ω).

Definition 2.1.2 Currents of bidimension (p, q) (≡ of bidegree (n−p, n−q))
are elements of the dual space D′p,q(Ω), i.e., continuous linear functionals on
Dp,q(Ω).

Any current T ∈ D′p,q(Ω) has a representation

T =
∑

|I|=n−p,|J |=n−q

TIJdz
I ∧ dz̄J , TIJ ∈ D′(Ω).

The action of T on φ will be written as 〈T, φ〉 or
∫
T ∧ φ.

The topology on D′p,q(Ω) (the weak topology of currents):

Tj → T ⇐⇒ 〈Tj, φ〉 → 〈T, φ〉 ∀φ ∈ Dp,q(Ω).

Differentiation of currents:

〈∂T, φ〉 := (−1)p+q+1〈T, ∂φ〉, 〈∂̄T, φ〉 := (−1)p+q+1〈T, ∂̄φ〉.

Definition 2.1.3 A current T ∈ D′p,p(Ω) is called positive (T ≥ 0) if 〈T, φ〉 ≥
0 for every differential form φ = iα1 ∧ ᾱ1 ∧ . . . ∧ iαp ∧ ᾱp with αk ∈ D1,0(Ω).
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The coefficients of such a current are Borel measures on Ω. Therefore, the
action of a positive current T =

∑
TIJdz

I∧dz̄J can be continuously extended
to the space of compactly supported forms φ with continuous coefficients,

|〈T, φ〉| ≤ ‖T‖suppφ‖φ‖,

where ‖T‖E =
∑
|TJK |E, |TJK |E is the total variation of the measure TJK

on E and ‖φ‖ = supK,L,x |φKL(x)|.

Denotation 2.1.4

β :=
i

2

∑
1≤k≤n

dzk ∧ dz̄k =
π

2
ddc|z|2

is the standard Kähler form on Cn, and

βp :=
1

p!
βp

is the p-dimensional volume element.

For every positive current T ∈ D′p,p(Ω), we have

‖T‖E ≤ cn|T ∧ βp|E.

Definition 2.1.5 A current T is called closed if dT = 0. When T ∈ D′p,p(Ω),
this is equivalent to saying that ∂T = 0 or ∂̄T = 0.

A useful variant of Stokes’ theorem reads as follows: if T ∈ D′p,p(Ω), then∫
D

dφ ∧ T = −
∫
∂D

φ ∧ T

for any domain D ⊂⊂ Ω and form φ such that dφ ∈ Dp,p(Ω).

Denotation 2.1.6 D+
p (Ω) will denote the cone of all positive closed currents

from D′p,p(Ω).

An important tool in the theory of currents is an extension theorem due
to Skoda and El Mir .
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Definition 2.1.7 Let E be a closed, complete pluripolar set in Ω (that is,
E = {z ∈ Ω : u(z) = −∞} for some u ∈ PSH(Ω)) and let T ∈ D+

p (Ω \E) be
a current whose coefficients TIJ have locally finite mass near E. Then the
current T̃ =

∑
T̃IJdz

I ∧ dz̄J with T̃IJ(A) := TIJ(A \ E) for all Borel A ⊂ Ω
is called the simple, or trivial, extension of T .

The simple extension T̃ was first introduced by Lelong when studying
integration over analytic varieties, see Example 3 below.

Theorem 2.1.8 [SK82], [EM] In the above conditions, T̃ ∈ D+
p (Ω).

Sometimes T̃ is the unique extension of T ∈ D+
p (Ω \ E): for example, if

E is an analytic set of dimension smaller than p (this is a particular case of
a more general result of the theory of currents).

2.2 Examples of currents

Standard examples are as follows.

1) Currents generated by psh functions:

u ∈ PSH(Ω) ⇐⇒
(

∂2u

∂zj∂z̄k

)
≥ 0 ⇐⇒ ddcu ∈ D+

n−1(Ω).

Furthermore, if T ∈ D+
n−1(Ω) then for any x ∈ Ω there is a neighbourhood

U and a function uU ∈ PSH(U) such that T = ddcuU in U .

2) For M a complex manifold of dimension p, the current [M ] of integra-
tion over M is defined as

〈[M ], φ〉 =

∫
M

φ.

Then [M ] ∈ D+
p (Ω) (that it is closed, follows from Stokes’ theorem).

3) Integration currents over analytic varieties. Let A be an analytic vari-
ety, i.e., locally A = {z : fα(z) = 0, α ∈ A}, and let Reg A be the set of its
regular points (where A is locally a manifold). If A is of pure dimension p,
define

〈[A], φ〉 :=

∫
Reg A

φ.
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Then [A] ∈ D+
p (Ω). (Non-trivial part is that [A] is closed; this fundamental

result is due to P. Lelong [Le57]. Nowadays it can be seen as a consequence
of Theorem 2.1.8.)

4) Holomorphic chains T =
∑
αk[Ak] ∈ D+

p (Ω), where αk ∈ Z+ and Ak
are analytic varieties of pure dimension p. When p = n− 1, the holomorphic
chains represent positive, or – in the algebraic geometry language – effective,
divisors.

2.3 Monge-Ampère currents

Here is a quick overview of the complex Monge-Ampère operator

(ddcu)n := ddcu ∧ . . . ∧ ddcu︸ ︷︷ ︸
n

acting on psh functions u or, more generally,

ddcu1 ∧ . . . ∧ ddcup (2.3.1)

for psh functions u1, . . . , up, p ≤ n. The wedge product cannot be extended
from smooth to arbitrary plurisubharmonic functions. However, (ddcu)p can
be defined as a positive closed current inductively,

(ddcu)p = ddc[u(ddcu)p−1], p = 2, . . . , n,

for all locally bounded psh functions u (Bedford–Taylor). More generally, for
any current T ∈ D+

p (Ω) and a function u ∈ PSH(Ω) ∩ L∞loc(Ω), the current
uT is well defined, has locally bounded mass, and

ddcu ∧ T := ddc(uT ) ∈ D+
p−1.

For u smooth, this is a classical result; the general case follows, by Lebesgue’s
dominated convergence theorem, from approximation of u by smooth uε.

The complex Monge-Ampère operator gives a characterization of maximal
psh functions:

Theorem 2.3.1 A locally bounded psh function u is maximal on a domain
ω ⊂ Cn if and only if (ddcu)n = 0 in ω.
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The following simple, but important technical result will be repeatedly
used in the future.

Lemma 2.3.2 (Boundary localization principle) Let Ω′ ⊂⊂ Ω, T ∈ D+
1 (Ω),

and let u, v ∈ PSH(Ω′) ∩ L∞(Ω′) be such that u = v near ∂Ω′. Then∫
Ω′
ddcu ∧ T =

∫
Ω′
ddcv ∧ T.

Obstacles for the definition of the Monge-Ampère current (2.3.1) arise
from the singularity sets of the functions uk. For the operator be well defined,
either the singularity set has to be “small” or the functions must not decrease
too rapidly to −∞. Having in mind applications to holomorphic mappings,
one needs to make restrictions to the singularity sets themselves (since the
decay of log |f | is unavoidably strongest possible).

Definition 2.3.3 The l-Hausdorff measure Hl is defined as

Hl(E) = lim
ε→0

inf
∑
j

rlj

where the infimum is taking over all covering of E by balls of radii rj < ε.

Theorem 2.3.4 (i) Let T ∈ D+
p (Ω), u1, . . . , uq ∈ PSH(Ω), q ≤ p, and let

the unbounded loci Lj of all uj are either compactly supported in Ω or satisfy

H2(p−m+1)(Lj1 ∩ . . . ∩ Ljm ∩ suppT ) = 0 (2.3.2)

for all choices of indices j1 < . . . < jm, m = 1, . . . , q, where H2(p−m+1) is the
2(p−m+ 1)-dimensional Hausdorff measure. Then the currents

u1dd
cu2 ∧ . . . ∧ ddcuq

and

ddcu1 ∧ ddcu2 ∧ . . . ∧ ddcuq ∧ T := ddc(u1dd
cu2 ∧ . . . ∧ ddcuq ∧ T )

are well defined and have locally finite mass. In particular, (ddcu)n is well
defined when u ∈ PSH(Ω) ∩ L∞loc(Ω \K) if K ⊂⊂ Ω.

(ii) The Monge-Ampère operators are continuous under monotone limits
(and with respect to convergence in capacity).
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When the functions uj have the form uj = log |fj|, condition (2.3.2) with
T = 1 means

dimZj1 ∩ . . . ∩ Zjm ≤ n−m, m = 1, 2, . . . , q, (2.3.3)

and for the function u = log
∑

1≤j≤N |fj|2 =: log |f |2, the operator (ddcu)q is
well defined if

dimZf ≤ n− q, (2.3.4)

Zf = Z1 ∩ . . . ∩ ZN being the zero set of the mapping f = (f1, . . . , fN).

2.4 Lelong numbers for positive closed currents

Definition 2.4.1 For T ∈ D+
p (Ω), σT := T ∧ βp ∈ D+

0 is the trace measure
of T . (If T = ddcu, then σT is just the Riesz measure σu of u.)

Denote σT (x, r) = σT (Br(x)). It can be also represented in the following
form.

Proposition 2.4.2

σT (x, r) = τp r
2p

∫
Br(x)

T ∧ (ddc log |z − x|)p .

Remark. By Theorem 2.3.4, the current T ∧ (ddc log |z − x|)p is well de-
fined.

Proof. Use the boundary localization principle with u(z) = |z − x|2 and
v(z) = χε(log |z − x|), where χε(t) equals e2t for t > log r − ε and is affine
otherwise, tangent to e2t at t = log r − ε. �

Definition 2.4.3 The Lelong number of a current T ∈ D+
p (Ω) at x ∈ Ω is

ν(T, x) = lim
r→0

1

τpr2p

∫
Br(x)

T ∧ βp = lim
r→0

∫
Br(x)

T ∧ (ddc log |z − x|)p . (2.4.5)

So, the Lelong number of a current T ∈ D+
p (Ω) can be viewed both as

the 2p−dimensional density of its trace measure σT and as the mass charged
at x by its “projective” trace measure T ∧ (ddc log | · −x|)p.
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Corollary 2.4.4 σT (x, r) ≥ τpr
2pν(T, x).

Examples 2.4.5 Lelong numbers of the model examples of currents are as
follows.

1) If T = ddcu for a psh function u, then ν(T, x) = ν(u, x). This follows
from the original definition (1.2.2) of the Lelong numbers of psh functions
since σu = σT . (For the consistency, one should write ν(ddcu, x) instead
of ν(u, x), however we prefer to keep the original denotation for the Lelong
numbers of functions since it is standard.)

2) For any complex manifold M , ν([M ], x) = 1 at all points x ∈M (and
of course ν([M ], x) = 0 for x outside M). This will follow from independence
of the Lelong numbers of the choice of coordinates, to be proved later.

3) Much more difficult is the corresponding result for analytic varieties
(Thie’s theorem) saying that the Lelong number ν([A], x) equals the multi-
plicity mx of the variety A at x; we will prove it later as well.

Note that the 2p-dimensional volume of an analytic variety A in a Borel
set D is precisely σ[A](D), which gives the following volume estimation: If
K ⊂⊂ A and r0 < dist (K, ∂Ω), then

τpr
2pmx ≤ Vol2p(A ∩Br(x)) ≤ C(r0, K,A) r2p ∀r < r0, ∀x ∈ K.

4) By linearity, the Lelong number of a holomorphic chain T =
∑

k αk[Ak]
is

ν(T, x) =
∑
k

αkν([Ak], x) =
∑
k

αkmx,k.

Fundamental properties of the Lelong numbers for positive closed currents
will be established by using machinery of generalized Lelong numbers due to
Demailly.

2.5 Definition of generalized Lelong numbers

An important notion of generalized Lelong numbers with respect to psh weights
was introduced and studied by Demailly. The idea is to replace the projec-
tive trace measure T ∧ (ddc log | ·−x|)p by T ∧ (ddcϕ)p with quite general psh
functions ϕ (weights) with singularity at x. Classical and directional Lelong
numbers are particular cases of these ones, with specified weight functions.
Moreover, the technique of generalized Lelong numbers gives simple and nat-
ural proofs of deep results concerning standard Lelong numbers.
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Denotation 2.5.1 Given ϕ ∈ PSH(Ω) and r ∈ R,

Bϕ
r = {z : ϕ(z) < r}, Sϕr = {z : ϕ(z) = r}.

Definition 2.5.2 A psh function ϕ is semiexhaustive if Bϕ
R ⊂⊂ Ω for some

R ∈ R. In particular, ϕ ∈ L∞loc(Ω \ B
ϕ
R) and thus (ddcϕ)k is well defined for

all k ≤ n. If, in addition, eϕ is continuous, ϕ is called a psh weight.

Definition 2.5.3 Given T ∈ D+
p (Ω), define

ν(T, ϕ, r) =

∫
Bϕr

T ∧ (ddcϕ)p

and
ν(T, ϕ) = lim

r→−∞
ν(T, ϕ, r),

the generalized Lelong number, or the Lelong-Demailly number, with respect
to the weight ϕ.

If T = ddcu for a psh function u, we will occasionally write, as for the
classical Lelong numbers, ν(u, ϕ) instead of ν(ddcu, ϕ).

Examples 2.5.4 Previous variants of the Lelong number:
1) if ϕ(z) = log |z − x|, then Bϕ

r = Ber(x), ν(T, ϕ, r) = ν(T, x, er) and
ν(T, ϕ) = ν(T, x).

2) the ”directional” weights

ϕa,x(z) := max
k
a−1
k log |zk − xk|, ak > 0, (2.5.6)

generate the directional Lelong numbers with respect to (a1, . . . , an) (to be
shown in Section 2.6).

The following useful formula can be derived by means of Stokes’ theorem
(as was done for the standard Lelong numbers).

Proposition 2.5.5 For any convex increasing function γ : R→ R,

ν(T, γ ◦ ϕ, γ(r)) = γ′(r)p ν(T, ϕ, r),

γ′ being understood as the left derivative. In particular,

ν(T, ϕ, r) = e−2pr

∫
Bϕr

T ∧
(

1

2
ddce2ϕ

)p
.
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2.6 Lelong–Jensen formula

The classical Lelong number of a psh function is both the density of its
associated measure and an asymptotic characteristic of the function itself. A
similar relation for the generalized Lelong numbers exists, too.

Definition 2.6.1 Let ϕ be a psh weight in Ω, ϕr = max {ϕ, r}. The swept
out Monge-Ampère measure is

µϕr = (ddcϕr)
n − 1r(dd

cϕ)n,

where 1r is the characteristic function of Ω \Bϕ
r .

Proposition 2.6.2 (i) µϕr ≥ 0;

(ii) suppµϕr ⊂ Sϕr and µϕr (Ω) = µϕr (Sϕr ) = (ddcϕ)n(Bϕ
r );

(iii) if (ddcϕ)n = 0 on Ω \ ϕ−1(−∞), then µϕr = (ddcϕr)
n;

Example 2.6.3 If ϕ = log |z−x|, then µϕr is the normalized Lebesgue mea-
sure on Ser(x).

Theorem 2.6.4 (Lelong–Jensen–Demailly formula) Any u ∈ PSH(Ω) is
µr-integrable, and

µϕr (u)−
∫
Bϕr

u(ddcϕ)n =

∫ r

−∞
ν(u, ϕ, t) dt.

Proof. Fubini’s and Stokes’ theorems. �

As a consequence, we have

Theorem 2.6.5 Let (ddcϕ)n = 0 on Ω\ϕ−1(−∞), then µϕr (u) is an increas-
ing and convex function of r, and

ν(u, ϕ) = lim
r→−∞

µϕr (u)

r
.

Proof. For any r < r0,

µϕr (u) = µϕr0(u)−
∫ r0

r

ν(u, ϕ, t) dt.
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Since t 7→ ν(u, ϕ, t) dt is positive and increasing, r 7→ µϕr (u) is increasing and
convex. Therefore, there exists the limit

lim
r→−∞

µϕr (u)

r
= lim

r→−∞

µϕr (u)− µϕr0(u)

r − r0

= lim
t→−∞

ν(u, ϕ, t) = ν(u, ϕ).

�

Examples 2.6.6 1) When ϕ(z) = log |z − x|, this is the representation of
classical Lelong number ν(u, x) = limt→−∞ λ(u, x, t)/t.

2) For a directional weight

ϕ(z) = ϕa,0(z) = max
k
a−1
k log |zk|, ak > 0,

Bϕ
r is the polydisk {|zk| < erak}, the measure µϕr (u) is supported by its dis-

tinguished boundary and is rotation invariant in each variable. So, µϕr (u) =
caλ(u, x, ra). Later we will compute ca = (a1 . . . an)−1, which gives

ν(u, ϕa,0) = (a1 . . . an)−1ν(u, 0, a).

2.7 Semicontinuity

The following two ’qualitative’ results are useful when studying families of
currents/weights.

The first one shows that the generalised Lelong numbers are semicontin-
uous with respect to variation of the currents.

Theorem 2.7.1 If currents Tk ∈ D+
p (Ω) converge to a current T , then

lim sup
k→∞

ν(Tk, ϕ) ≤ ν(T, ϕ).

Proof. Boundary localization principle. �

The second result is semicontinuity of the generalized Lelong numbers
with respect to variation of psh weights. Here, however, a stronger condition
on convergence of the weights is needed.

Theorem 2.7.2 If psh weights ϕk and ϕ are such that exp{ϕk} → exp{ϕ}
uniformly on compact subsets of Ω, then

lim sup
k→∞

ν(T, ϕk) ≤ ν(T, ϕ).
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Proof. The condition on the weights is equivalent to uniform convergence
of max{ϕk, t} to max{ϕ, t} for every t. This implies convergence of the
currents T ∧ (ddc max{ϕk, t})p to T ∧ (ddc max{ϕ, t})p. Then – the boundary
localization principle. �

As a consequence, we get

Corollary 2.7.3 Classical Lelong numbers ν(T, x) are upper semicontinuous
functions of x.

Proof. Choose the weights ϕk = log |z − x(k)| for x(k) → x. �

2.8 Comparison theorems

Now we present two ‘quantitative’ results on variation of the generalized
Lelong numbers with respect to currents and weights.

The first comparison theorem describes dependence on the psh weights.
For a weight ϕ, denote L(ϕ) = ϕ−1(−∞).

Theorem 2.8.1 Let T ∈ D+
p (Ω) and ϕ and ψ be psh weights such that

lim sup
ψ(z)

ϕ(z)
= l <∞ as z → L(ϕ), z ∈ suppT,

then ν(T, ψ) ≤ lp ν(T, ϕ). Consequently, if there exists limψ(z)/ϕ(z) = l,
then ν(T, ψ) = lp ν(T, ϕ).

Proof. It suffices to establish ν(T, ψ) ≤ ν(T, ϕ), provided l < 1. This will be
done again by using the boundary localization principle.

For c > 0, denote uc = max{ψ − c, ϕ}. If t < r, then, for c big enough,
uc = ϕ on Bϕ

r \B
ϕ
t . Therefore, ν(T, ϕ, r) = ν(T, uc, r) ≥ ν(T, uc).

On the other hand, since l < 1, uc = ψ − c on Bϕ
s for s << t and so,

ν(T, uc) = ν(T, ψ − c) = ν(T, ψ). �

The second comparison theorem (which can be proved by similar ar-
guments) indicates dependence of the generalized Lelong numbers on the
Monge-Ampère currents.
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Theorem 2.8.2 Let T ∈ D+
p (Ω) and uk, vk ∈ PSH(Ω), 1 ≤ k ≤ q, be such

that the currents ddcu1 ∧ . . . ∧ ddcuq ∧ T and ddcv1 ∧ . . . ∧ ddcvq ∧ T are well
defined, vk = −∞ on suppT ∩ L(ϕ), and

lim sup
uk(z)

vk(z)
= lk <∞ as z → L(ϕ), z ∈ suppT \ v−1

k (−∞), 1 ≤ k ≤ q.

Then ν(ddcu1 ∧ . . . ∧ ddcuq ∧ T, ϕ) ≤ l1 . . . lq ν(ddcv1 ∧ . . . ∧ ddcvq ∧ T, ϕ).

These results make it possible to obtain relatively simple proofs for fun-
damental facts on the Lelong numbers of psh functions and positive closed
currents. For example, the first comparison theorem immediately implies

Corollary 2.8.3 The Lelong number of a closed positive current is indepen-
dent of the choice of local coordinates. In particular, ν([M ], x) = 1 for any
point x on a complex manifold M .

We can prove now Thie’s theorem on the Lelong numbers of the integra-
tion currents along analytic varieties as well.

Corollary 2.8.4 If x is a point of an analytic variety A, then ν([A], x) equals
the multiplicity of the variety at x.

Proof. Assume x is a singular point of A. Recall that one can choose a
neighbourhood U and local coordinates (z′, z′′) ∈ Cp×Cn−p such that A∩U ⊂
K = {(z′, z′′) : |z′′| ≤ C|z′|}, C > 0. In these coordinates, x = 0. Let B′ ⊂
Cp, B′′ ⊂ Cn−p be such that B′×B′′ ⊂ U . The projection ρ : A∩(B′×B′′)→ B′
is proper and finite, so it is a ramified covering of B′. The number mx of
sheets of the covering ρ is the multiplicity of A at x.

Set ϕ(z) = log |z| = 1
2

log(|z′|2+|z′′|2), ψ(z) = log |z′|. Then ϕ(z)/ψ(z)→
1 as z → 0 inside the cone K (and thus, on A). Therefore,

ν([A], x) = ν([A], ϕ) = ν([A], ψ).

Furthermore,

ν([A], ψ) = r−2π

∫
Bψlog r

[A] ∧
(

1

2
ddce2ψ

)p
= r−2p

∫
Reg A∩{z:|z′|<r}

(
1

2
ddc|ρ(z)|2

)p
= mx r

−2p

∫
B′r

(ddc|z′|)p = mx,
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which completes the proof. �

The second comparison theorem shows that the residual Monge-Ampère
mass (ddcu)n(x) is a function of asymptotic behaviour of u near x. This leads
to the notion of psh singularities at x as equivalence classes of psh functions
with respect to their asymptotics.

In particular, the functions maxj log |zj|aj and log
∑

j |zj|aj (with ak > 0)
represent the same singularity at 0. Moreover,

(ddc max
j

log |zj|aj)n = (ddc log
∑
j

|zj|aj)n = a1 . . . an δ0 (2.8.7)

(the fact was used in relating directional Lelong numbers ν(u, x, a) to the
Lelong numbers ν(u, ϕa,x) with respect to the directional weights ϕa,x). This
can be proved as follows.

By approximation arguments, it suffices to consider only the case of ra-
tional aj > 0. Moreover, due to the homogeneity, we can assume them to be
even numbers, aj = 2mj. Note that both the currents are supported at the
origin. Hence the first equality follows from the Theorem 2.8.2. To evaluate
the mass of the currents there, we use a representation of the Lelong numbers
as densities of measures (Proposition 2.5.5). Denote ϕ(z) = 1

2
log
∑
|zj|2mj ,

then∫
Bϕlog r

(ddcϕ)n = r−2n

∫
Bϕlog r

(
1

2
ddceϕ

)n
= m1 . . .mn r

−2n

∫
Br

(ddc|w|)n

= m1 . . .mn 2n = a1 . . . an.

Another its application is the following result comparing the Lelong num-
ber of a wedge product with the Lelong numbers of the factors.

Corollary 2.8.5 If ddcu1 ∧ . . . ∧ ddcuq is well defined, then

ν(ddcu1 ∧ . . . ∧ ddcuq ∧ T, x) ≥ ν(u1, x) . . . ν(uq, x) ν(T, x).

In particular,
(ddcu)n(x) ≥ ν(u, x)n.

25



3 Relative types and integrability index

Now we pass to other characteristics of psh singularities. The first one, rela-
tive type, is another, quite elementary, generalization of the notion of Lelong
number [R06]. The second one, introduced in [Sk72] as integrability index3,
in spite of simplicity of the definition, is more involved; in particular, proofs
of its fundamental properties require advanced technique of ’hard analysis’.
For Section 3.1, see [R06], and for Section 3.2, see [DK01] and [K94].

3.1 Relative types

The classical Lelong number ν(u, x) can be defined in two equivalent ways:

ν(u, x) = lim inf
z→x

u(z)

log |z − x|
= ddcu ∧ (ddc log | · −x|)n−1({x}).

The definition as the residual Monge-Ampère mass has turned out extremely
fruitful as it reveals its relations to analytic geometry and allows using ma-
chinery of differential operators. By replacing the function log | · −x| with
arbitrary psh weights ϕ in Demailly’s generalized Lelong numbers, the theory
has become much more flexible and powerful.

On the other hand, the ”elementary” definition of the Lelong number
as the lower limit is intimately connected with asymptotic behaviour of psh
functions near their singularity points. The bound

u(z) ≤ ν(u, x) log |z − x|+O(1)

gives the best possible bound on u(z) when z → x in terms of the ’model’
singularity log |z − x|.

This motivates introducing another generalization of Lelong numbers by
comparing the asymptotic behavior of the psh function to that of model psh
weights ϕ. In order to get a pointwise bound, one needs to impose certain
restrictions on the weights. Namely, this works if the weights ϕ are maximal
psh functions on punctured neighborhoods of x, which is characterized by
the equation

(ddcϕ)n = 0 outside x.

Such weights will be called maximal.

3Its reciprocal is known as log canonical threshold, or complex singularity exponent.
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Definition 3.1.1 Given a maximal weight ϕ, the type of u relative to ϕ is

σ(u, ϕ) = lim inf
z→x

u(z)

ϕ(z)
.

Then, by the same arguments as for log |z − x|, we get the bound

u(z) ≤ σ(u, ϕ)ϕ(z) +O(1)

as z → x.

Example 3.1.2 A model example of relative types are those with respect
to the directional weights

ϕa,x = max
k
a−1
k log |zk − xk|, ak > 0.

In this case,
σ(u, ϕa,x) = ν(u, x, a),

the directional Lelong numbers.

As is easy to see, the relative types σ are, as the classic Lelong numbers,
upper semicontinuous:

Proposition 3.1.3 (i) If uj → u in L1
loc, then σ(u, ϕ) ≥ lim sup σ(uj, ϕ).

(ii) If eϕj → eϕ uniformly, then σ(u, ϕ) ≥ lim sup σ(u, ϕj).

An analogue of the first comparison theorem is the inequality

σ(u, ϕ) ≥ σ(u, ψ)σ(ψ, ϕ),

which implies σ(u, ψ) = l σ(u, ϕ), provided ϕ/ψ → l. The second compari-
son theorem is as follows: if lim inf u(z)/v(z) = l, then σ(u, ϕ) ≥ l σ(v, ϕ).
Note that these are much easier results than those for Demailly’s generalized
Lelong numbers.

Like the classical Lelong number, the relative type has the property

σ
(

max
k
uk

)
= min

k
σ(uk)
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for finitely many uk, while the type of a sum of the function need not equal
the sum of their types (however it cannot be less than that).

By the first comparison theorem (Theorem 2.8.1) for the currents, the
generalized Lelong numbers and relative functions are related by

ν(u, ϕ) ≥ mϕ σ(u, ϕ),

where mϕ = (ddcϕ)n(x). It is not known if any relation in the opposite
direction holds for a general maximal weight ϕ.

It is worth mentioning that the relative types as functionals on psh sin-
gularities can be characterized by some of their basic properties:

Theorem 3.1.4 Let a function σ : PSHx → [0,∞] be such that

(i) σ(cu) = c σ(u) for all c > 0;

(ii) if u1 ≤ u2 +O(1) near x, then σ(u1) ≥ σ(u2);

(iii) σ(maxk uk) = mink σ(uk), k = 1, 2;

(iv) if uj → u in L1
loc, then lim sup σ(uj) ≤ σ(u);

(v) σ(log | · −x|) > 0.

Then there exists a maximal psh weight ϕ such that σ(u) = σ(u, ϕ) for every
u ∈ PSHx. The representation is essentially unique: if two weights ϕ and ψ
represent σ, then ϕ = ψ +O(1) near x.

Proof. Let D be a bounded hyperconvex neighbourhood x. Introduce the
function

ϕ(z) = sup {u(z) : u ∈Mσ},

where Mσ = {u ∈ PSH−(D) : σ(u) ≥ 1}, and show that σ(·) = σ(·, ϕ). �

As we will see later on, a variant of Siu’s analyticity theorem is valid for
the relative types, too.
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3.2 Integrability index (and log canonical threshold)

Another way of measuring singularity of u is to study local integrability of
e−u/γ for γ > 0 (note that since u may be discontinuous, even integrability
of e−u near x with u(x) > −∞ is far from being evident).

Definition 3.2.1 The value

I(u, x) = inf {γ > 0 : e−u/γ ∈ L2
loc(x)} (3.2.1)

is called the integrability index, or Arnold multiplicity, of u at x. Its recipro-
cal,

lct(u) = (I(u, x))−1 = sup {c > 0 : e−c u ∈ L2
loc(x)},

is called the log canonical threshold, or complex singularity exponent at x.

Similarly to the Lelong numbers and their generalizations, stronger sin-
gularities have greater integrability indices: I(u, x) ≥ I(v, x) if u ≤ v+O(1),
and I(c u, x) = c I(u, x). Furthermore, as follows from the Hölder inequality,

I(u+ v, x) ≤ I(u, x) + I(v, x) : (3.2.2)

if a > I(u, x), b > I(v, x), then∫
e
−2(u+v)
a+b βn ≤

(∫
e−2u/a βn

)1/p(∫
e−2v/b βn

)1/q

with p = a+b
a

and q = a+b
b

.

In the one-dimensional situation, the integrability index coincides with
the point mass of the Riesz measure – i.e., with the Lelong number:

Proposition 3.2.2 If n = 1, then I(u, x) = ν(u, x).

Proof. Integral representation of u as the sum of the logarithmic potential of
its Riesz measure and a harmonic function. �

Remark 3.2.3 As an immediate consequence, we get that for n = 1 and
any u with I(u, x) > 0,

e−u/I(u,x) 6∈ L2
loc(x), (3.2.3)

which follows from the inequality u(z) ≤ ν(u, x) log |z − x| + O(1) and the
evident relation |z|−1 6∈ L2

loc(0). The same property holds in several variables
as well, however this is a much more complicated result known as Opennes
Conjecture of Demailly and Kollár (2001) and proved by Berndtsson in 2013.
We will come to this shortly.
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Examples 3.2.4 I(log |z|, 0) = 1/n. More generally, if z = (z′, z′′) ∈ Ck ×
Cn−k, then I(log |z′|, 0) = 1/k.

An important tool is the following restriction formula.

Theorem 3.2.5 (Demailly–Kollar) If Y is a complex manifold and x ∈ Y ,
then

I(u|Y , x) ≥ I(u, x).

The result follows easily from the Ohsawa-Takegoshi theorem (coming
soon, see Section 4.2). Note that, in view of the above examples, the inte-
grability index, unlike the Lelong number, is quite sensitive to the dimension
of the singularity set and one cannot expect an equality for generic Y .

Integrability indices are related to the Lelong numbers by Skoda’s in-
equalities:

Proposition 3.2.6

1

n
ν(u, x) ≤ I(u, x) ≤ ν(u, x),

the extremal situations being realized for u = log |z1| and u = log |z|.

Proof. The first inequality follows from the bound u ≤ ν(u, x) log |z − x| +
O(1). The second one results from the restriction formula (Theorem 3.2.5)
applied to the restriction of u to a generic complex line l where the equalities
I(u|l, x) = ν(u|l, x) = ν(u, x) hold. �

Remark 3.2.7 A more refined lower bound is due to Kiselman:

I(u, x) ≥ sup
a∈Rn+

ν(u, x, a)∑
j aj

,

which follows from the inequality u ≤ Ψu,x +O(1) and a computation of the
integrability index for the indicators Ψu,x.

Like various types of Lelong numbers, the integrability index I(u, x) is an
upper semicontinuous function of u:
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Theorem 3.2.8 If uj → u in L1
loc(Ω), then

lim sup
j→∞

I(uj, x) ≤ I(u, x), x ∈ Ω.

Moreover, if e−u ∈ L2
loc(x), then e−uj → e−u in L2

loc(x).

Applying the second statement to uj := u/γj with γj ↘ I(u, x), we get
the openness property (3.2.3).

For n = 1, a proof of Theorem 3.2.8 can be deduced again from the the
representation of the integrability index as the Riesz mass at x. We postpone
the case n > 1 until we get a corresponding tool.

An analytic object representing the singularities of u is the multiplier
ideal sheaf J (u) consisting of germs of holomorphic functions f such that
|f |e−u ∈ L2

loc. It is a coherent analytic sheaf. Moreover, if U ⊂⊂ Ω is
pseudoconvex, then the restriction of J (u) to U is generated as an OU -
module by a Hilbert basis {σl} of the Hilbert space Hu(U) of holomorphic
functions f on U such that |f |e−u ∈ L2(U). We will use this quite soon.

4 Analyticity theorems

Deep results on psh singularities (like the celebrated Siu’s analyticity theo-
rem) rest on ’hard analysis’, mostly on L2-extension techniques. We present
here two main theorems (due to Hörmander-Bombieri-Skoda and Ohsawa-
Takegoshi), without proofs, and show how they imply analyticity theorems
on upperlevel sets for the characteristics of psh singularities. We also use the
L2-technique to prove Demailly’s approximation theorem and fundamental
properties of integrability index.

See [B lLN2], [D92], [Dbook] (Chapters III and VIII), [Fo], [K94], [R09].

4.1 L2-extension theorems

Plurisubharmonicity assumes no a priori analyticity. Nevertheless, analytic
varieties appear from any psh function (moreover, from any positive closed
current) with ’strong’ singularities.

A bridge between plurisubharmonicity and analyticity are L2-extension
theorems based on the Hörmander type results on the ∂̄-problem. In partic-
ular, the following two statements have great importance in studying singu-
larities of psh functions.
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Theorem 4.1.1 (Hörmander–Bombieri–Skoda) If u is plurisubharmonic on
a bounded pseudoconvex domain Ω and e−u ∈ L2

loc(x) for some x ∈ Ω, then
there exists a holomorphic function f on Ω such that∫

Ω

|f |2e−2u βn <∞

and f(x) = 1.

Theorem 4.1.2 (Ohsawa–Takegoshi) Let Y be a p-dimensional affine sub-
space of Cn, Ω be a bounded pseudoconvex domain in Cn, and u ∈ PSH(Ω).
Then any function h ∈ Hol(Y ∩ Ω) with∫

Y ∩Ω

|h|2e−u βp <∞

can be extended to a function f ∈ Hol(Ω) and∫
Ω

|f |2e−u βn ≤ A(p, n, diam Ω)

∫
Y ∩Ω

|h|2e−u βp.

As we will see, these (and related) results ensure that the considered
characteristics of psh singularities bear a certain analyticity feature. Namely,
this is semicontinuity of the characteristics in (analytic) Zariski topology
(where closed sets are analytic varieties).

4.2 Integrability index

1. By using the Ohsawa–Takegoshi theorem, we can now prove the restriction
formula for the integrability index: I(u|Y , x) ≥ I(u, x).

Proof of Theorem 3.2.5. Let γ > I(u|Y , x), then∫
B(x,r)∩Y

e−2u/γ βp <∞.

Then there exists F ∈ O(B(x, r)) such that F |Y = 1 and∫
B(x,r)

|F |2e−2u/γ βn <∞.

Since F (x) = 1, this means γ > I(u, x). �
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2. Here we show how the Ohsawa–Takegoshi theorem leads to a proof of
the Openness Conjecture and semicontinuity of the integrability index. We
will use arguments from [GuaZh15] and [Hi14].

Sketch of proof of Theorem 3.2.8, n > 1. In the one-dimensional case,
the crucial fact is the uniform bound∫

Ω

e−2cuj β1 ≤M, j ≥ j0

for some c > 1 and all j > j0, which follows from the upper semicontinuity of
the Lelong numbers. In higher dimensions, the argument can be substituted
by the Ohsawa–Takegoshi theorem.

We will use induction in the dimension. We assume u, uj ∈ PSH−(D),
Dn ⊂⊂ D. By Fubini’s theorem,∫

D

∫
Dn−1

e−2u(z′, zn) βn−1(z′) β1(zn) <∞.

Therefore, for any ε > 0 there exists η > 0 and a set E ∈ Dη \ {0} of positive
measure such that ∫

Dn−1

e−2u(z′, wn) βn−1(z′) <
ε2

|wn|2

for every wn ∈ E. Then we can choose wn in such a way that uj(·, wn)
converge to u(·, wn). By the induction hypothesis, there exists c > 1 such
that ∫

Dn−1

e−2c uj(z
′, wn) βn−1(z′) <

ε2

|wn|2
, j ≥ j0,

as well. By the Ohsawa–Takegoshi theorem, there exist holomorphic func-
tions fj in Dn such that fj(z

′, wn) ≡ 1 and∫
Dn
|fj|2e−2c uj βn < A

ε2

|wn|2
, j ≥ j0.

One can then prove that for ε < 1/2, the inequality |fj| ≥ 1/4 holds on a
neighborhood ω of 0 and so,∫

ω

e−2cuj βn ≤M, j ≥ j0.
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The rest of the proof is exactly as in the one-dimensional case. �

3. Now we pass to an analyticity theorem for the integrability index. A
basic result is Zariski’s semicontinuity of the map x 7→ I(u, x).

Denotation 4.2.1 IEc(u) = {x : I(u, x) ≥ c} is the upperlevel set for the
integrability index (or, equivalently, the lowerlevel set for the log canonical
threshold).

Theorem 4.2.2 If u ∈ PSH(Ω), then IEc(u) is an analytic subvariety of Ω
for all c > 0.

Proof. Denote
Nu = {x ∈ Ω : e−u 6∈ L2

loc(x)}.

It is an analytic variety in Ω. Indeed, if x ∈ Nu, then f(x) = 0 for any
function f from

Hu = {f ∈ O(Ω) :

∫
Ω

|f |2e−2u βn <∞},

soNu ⊂ ∩{f−1(0) : f ∈ Hu}. The reverse inclusion follows from Hörmander’s
Theorem 4.1.1.

Now, since

IEc(u) =
⋂
a<c

Nu/a,

this completes the proof. �

4.3 Demailly’s approximation theorem

In order to give a short proof of Siu’s analyticity theorem for Lelong numbers,
we present here an approximation technique due to Demailly, an extremely
powerful tool for investigating psh singularities.

Definition 4.3.1 Given u ∈ PSH(Ω), take the multiplier ideals

J (mu) = {f ∈ O(Ω) :

∫
Ω

|f |2e−2muβn <∞}, m = 1, 2, . . . ,
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considered as weighted Hilbert spacesHm = Hm,u(Ω) with the inner products

(f, g)m =

∫
Ω

f ḡ e−2muβn.

Let {σ(m)
l }l be an orthonormal basis of Hm, then Km(z) :=

∑
l |σ

(m)
l (z)|2 is

the Bergman kernel forHm, the series being converging uniformly on compact
subset of Ω. Denote

um = Dmu =
1

2m
logKm ∈ PSH(Ω).

Note that

um(z) =
1

m
sup{log |f(z)| : ||f ||m < 1} (4.3.1)

because Km(z)1/2 is the norm of the evaluation functional f 7→ f(z) on Hm.

Theorem 4.3.2 [D92]

(i) There are constants C1, C2 > 0 such that for any z ∈ Ω and every
r < dist (z, ∂Ω),

u(z)− C1

m
≤ um(z) ≤ sup

ζ∈Br(z)
u(ζ) +

1

m
log

C2

rn
. (4.3.2)

In particular, um → u pointwise and in L1
loc(Ω).

(ii)

ν(u, x)− n

m
≤ ν(um, x) ≤ ν(u, x) ∀x ∈ Ω.

(iii)

I(u, x)− 1

n
≤ I(um, x) ≤ I(u, x).

Proof. For f ∈ Hm,

|f(z)|2 ≤ 1

τnr2n

∫
Br(z)
|f |2 βn ≤

||f ||2m
τnr2n

e2m sup{u(ζ): ζ∈Br(z)},

which, by (4.3.1), gives us the second inequality in (4.3.2).
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The proof of the first inequality uses the Ohsawa–Takegoshi theorem
(more exactly, its particular case of a one-point set Y ). Namely, for any
z ∈ Ω and a ∈ C there exists a function f ∈ O(Ω) such that f(z) = a and∫

Ω

|f |2e−2muβn ≤ A |a|2e−2mu(z).

Choosing a such that the RHS here equals 1, we get ||fm||m ≤ 1 and so,

um(z) ≥ 1

m
log |f(z)| = log |a|

m
= u(z)− logC

m
.

Assertions (ii) and (iii) follow from (i). �

Remark 4.3.3 It is worth mentioning that the functions um from Theo-
rem 4.3.2 control not only classical Lelong numbers of u, but also all its
directional ones:

ν(u, x, a)−m−1
∑
j

aj ≤ ν(um, x, a) ≤ ν(u, x, a) ∀x ∈ Ω, ∀a ∈ Rn
+.

Moreover, a similar fact is true for the relative types σ(um, ϕ) with respect
to the weights ϕ that are exponentially Hölder continuous:

eϕ(x) − eϕ(y) ≤ C |x− y|α;

see [R01], [BoFJ08], [R13].

4.4 Upperlevel sets for Lelong numbers

Given T ∈ D+
p (Ω), let

Ec(T ) := {x ∈ Ω : ν(T, x) ≥ c}, c > 0,

be the upperlevel sets for the Lelong numbers of T .
Since the function x 7→ ν(T, x) is lower semicontinuous (in the usual

topology), every set Ec(T ) is closed.

Proposition 4.4.1 Ec(T ) has locally finite 2p-Hausdorff measure.
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Proof. Use the bound for the trace measure σT of the current T ,

σT (Bε(x)) ≥ ε2pν(T, x),

to deduce
Hp(Kc) ≤ C lim inf

ε→0
σT (Kc + Bε) <∞

for the sets Kc = Ec(T ) ∩K, K ⊂⊂ Ω. �

Next step is a reduction to psh functions:

Theorem 4.4.2 Given a current T ∈ D+
p (Ω), there exists u ∈ PSH(Ω) such

that ν(T, x) = ν(u, x) for every x.

Sketch of a proof. Consider the ’canonical potential’

Uj(z) = −ω−1
p

∫
|z − ζ|−2pηj(ζ) dσT (ζ)

with ηj a non-negative, smooth function supported in Ω, and equal to 1 on
a neighbourhood of Ωj ⊂⊂ Ω. The potential is subharmonic in R2n, and its
Riesz measure

σj(x, r) =
1

2π

∫
Br(x)

∆Uj = [1 + o(1)]τn−1r
2n−2ν(T, x) + o(r2n−2)

as r → 0, so

lim
r→0

σj(x, r)

τn−1r2n−2
= ν(T, x) ∀x ∈ Ωj.

One can show that ddcUj ≥ −Nj dd
c|z|2, so uj(z) := Uj(z) +Nj |z|2 +Mj is

psh and ν(T, x) = ν(uj, x) for all x ∈ Ωj. Exhausting Ω by Ωj we get the
desired function u. �

The main result is as follows.

Theorem 4.4.3 (Siu’s analyticity theorem) If T ∈ D+
p (Ω) and c > 0, then

Ec(T ) is an analytic variety of dimension ≤ p.

The original Siu’s proof (1974) (developing results of Bombieri and Skoda)
takes about 100 pages. A considerable simplification was made by Lelong
(1977) who reduced the problem to that for psh function. In 1979, Kiselman
applied the attenuating singularities technique to get a simpler proof for
the classical Lelong numbers and, in 1986, for the directional numbers. His
ideas were used by Demailly to prove the theorem for the generalized Lelong
numbers (1987). Here we give the shortest known proof for the classical
Lelong numbers due to Demailly [D92].
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Proof. It remains to show that for any psh function u, the set

Ec(u) := {x ∈ Ω : ν(u, x) ≥ c}

is analytic. Let um be Demailly’s approximations of u by functions with
analytic singularities. Then ν(u, x) ≥ c implies

ν(um, x) ≥ c− n

m
.

On the other hand, if ν(u, x) < c, then ν(um, x) < c for all m and hence

ν(um, x) < c− n

m0

for some m0. Therefore,

Ec(u) =
⋂

m≥m0

Ec−n/m(um).

We recall that

um =
1

2m
log
∑
l

|σ(m)
l (z)|2

with analytic functions σ
(m)
l . Since

x ∈ Ec−n/m(um) ⇐⇒ ∂α

∂zα
σ

(m)
l (x) = 0 ∀α : |α| < cm− n,

each set Ec−n/m(um) is analytic, and so is Ec(u). �

4.5 Analyticity theorem for Lelong–Demailly numbers

Let X be a Stein manifold (for example, a pseudoconvex domain in Cm), and
let ϕ be a continuous semiexhaustive psh function on Ω×X (that is, {(z, x) :
ϕ(z, x) < C} ⊂⊂ Ω×X for some C ∈ R). The function ϕx(z) := ϕ(z, x) is
a psh weight on Ω. Denote

Ec = Ec(T, ϕ) = {x ∈ X : ν(T, ϕx) ≥ c}.

Theorem 4.5.1 [D87], [D93], [Dbook] If expϕ ∈ C(Ω×X) and is Hölder
with respect to x, then Ec is analytic in X.
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Scheme of proof.
1) Construction of a family of psh potentials ua(x), a ≥ 0, whose be-

haviour is determined by ν(T, ϕx). This refined version of what was done for
the classical Lelong numbers is the attenuating singularities technique due
to Kiselman.

2) Let Na,b = {x ∈ X : exp{−ua/b} 6∈ L2
loc(x)}, then Ec =

⋂
Na,b, the

intersection taken over all a < c and b < (c− a)γ/m, where γ is the Hölder
exponent of ϕ.

3) By the analyticity theorem for the integrability indices, each set Na,b

is analytic.

4.6 Analyticity for relative types

A similar approach can be applied to the superlevel sets for the types relative
to Hölder continuous maximal weights.

We consider a continuous, semiexhaustive function ϕ ∈ PSH(Ω×Ω), such
that the set {z : ϕ(z, x) = −∞} is finite for every x ∈ Ω, (ddcϕ)n = 0 on
{(x, y) : ϕ(z, x) > −∞}, and exponentially Hölder continuous in x.

It then follows that ϕx(z) := ϕ(z, x) is a weight satisfying (ddcϕx)
n = 0

outside ϕ−1
x (−∞). It can be shown that Λ(u, ϕx, r) = sup{u(z) : ϕx(z) < r}

is psh [D85, Thm. 6.11].
By the scaling ϕ 7→ c ϕ, c > 0, it suffices to consider the sets

S1(u, ϕ,Ω) = {x ∈ Ω : u(z) ≤ ϕ(z, x) +O(1) as z → x}.

Theorem 4.6.1 [R09] Let ϕ ∈ PSH(Ω × Ω) satisfy the above conditions.
Then for any u ∈ PSH(Ω), the set S1(u, ϕ,Ω) is analytic.

This can be applied to questions on propagation of (sub)analytic singu-
larities of the following kind.

Corollary 4.6.2 [R09] Let the zero sets Aj of functions f1, . . . , fq ∈ O(Ω),
q < n, form a complete intersection, i.e., codimZ = q, where Z = ∩jAj. If
a function u ∈ PSH(Ω) satisfies

u ≤ log |f |+O(1) (4.6.3)

on an open set ω intersecting all the irreducible components of Z, then it
satisfies (4.6.3) on the whole Ω.
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Proof. It suffices to consider the situation when u < 0 and there exist
functions fq+1, . . . , fn ∈ O(Ω) such that for every x ∈ Ω the set {z : fj(z) =
fj(x), 1 ≤ j ≤ n} is finite. Denote f ′ = (f1, . . . , fq) and f ′′ = (fq+1, . . . , fn),
so the bound (4.6.3) rewrites as u ≤ log |f ′|+O(1).

For m > 0, take

ϕm(z, x) = max{log(|f ′(x)− f ′(z)|,m log |f ′′(x)− f ′′(z)|}.

It satisfies the conditions of Theorem 4.6.1, so S1(u, ϕm,Ω) is an analytic
variety in Ω such that

S1(u, ϕm,Ω) ∩ ω ⊃ S(log |f ′|, ϕm,Ω) ∩ ω.

Therefore, it contains all irreducible components of S1(log |f ′|, ϕm,Ω), that
is, the set Z.

Given a ∈ Z, we can assume D = {x ∈ Ω : ϕ1(x, a) < 0} ⊂⊂ Ω. Then
u ≤ ϕm(x, a) on D because the latter is the largest negative psh function v
on D such that σ(v, ϕm) ≥ 1. Taking m→∞, we get u ≤ log |f ′| in D. �

4.7 Siu’s decomposition formula

Importance of Siu’s fundamental result can be illustrated by structural for-
mulas for closed positive currents.

Definition 4.7.1 Let A be an irreducible analytic variety in Ω, dimA = p.
The generic Lelong number of T ∈ D+

p (Ω) along A is

ν(T,A) := inf {ν(T, x) : x ∈ A}.

By Siu’s semicontinuity theorem, ν(T,A) = ν(T, x) for all x ∈ A outside
some its proper analytic subvariety A′.

Denote by χA the characteristic function of the set A: χA(x) = 1 if x ∈ A
and χA(x) = 0 otherwise.

Proposition 4.7.2 χAT = ν(T,A) [A].

Proof. Note that χAT ∈ D+
p (Ω). Indeed, χAT = T−χΩ\AT ≥ 0 and χΩ\AT is

close in view of Theorem 2.1.8 (it is the simple extension of T along A). Since
χAT is of bidimension (p, p) and supported by the p−dimensional variety
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A, it has the form χAT = λ[A] for a positive locally integrable function
λ on Reg A (general fact of theory of currents). Since it is closed, λ is a
nonnegative constant. Finally, λ = ν(T,A) because ν(λ[A], x) = ν(T,A) for
all x ∈ A \ A′. �

Theorem 4.7.3 (Siu’s formula) For any current T ∈ D+
p (Ω), there is a

unique decomposition

T =
∑
j

λj[Aj] +R, (4.7.4)

where λj > 0, [Aj] are the integration currents over irreducible p−dimensional
varieties Aj, and R ∈ D+

p (Ω) is such that dimEc(R) < p for every c > 0.
The values λj are the generic Lelong numbers of T along the varieties Aj.

Proof. Let {Aj} be p−dimensional irreducible components of the set

{Ec(T )}c∈Q+ ,

and let λj = ν(T,Aj). Then the sequence of currents

R1 := T − λ1[A1] ∈ D+
p (Ω), R2 := R1 − λ2[A2] ∈ D+

p (Ω), ...

decreases to a current R ∈ D+
p (Ω), which gives us (4.7.4). Furthermore,

dimEc(R) < p for every c > 0 because ν(R,Aj) = 0 for all j. �

Some components of lower dimension can actually occur in Ec(R), how-
ever χAR = 0 for any p−dimensional variety A.

4.8 King–Demailly formula

Siu’s structural formula can be specified for the case when T = (ddc log |f |)p
for a holomorphic mapping f = (f1, . . . , fq) : Ω → Cq. Let {Aj} be the
irreducible components of its zero set Af = f−1(0). Consider u = log |f |. If
codimAf = minj codimAj ≥ l, then (ddcu)l is well defined.

When dealing with holomorphic mappings, it is convenient to consider
the corresponding holomorphic chains, i.e., the currents

Zf =
∑
j

mj[Aj]

where the summation runs over all p−codimensional components Aj of the
variety Af , and mj ∈ Z+ are the generic multiplicities of f at Aj (i.e., the
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generic Lelong numbers of (ddc log |f |)p along Aj; we will explain soon why
these are the same).

The following result (originally established by King for q = p ≤ n, see
[GK73], and then extended by Demailly [D87], [Dbook] to the general case)
represents holomorphic chains as singular parts of Monge-Ampère currents.

Theorem 4.8.1 (King–Demailly formula) Let f : Ω→ Cq be a holomorphic
mapping, codimAf = p. Then the currents (ddc log |f |)l and log |f |(ddc log |f |)l
with l < p have locally integrable coefficients, and

(ddc log |f |)p = Zf +R, (4.8.5)

where Zf is the corresponding holomorphic chain and R ∈ D+
n−p(Ω) is such

that χAfR = 0 and the sets Ec(R), c > 0, are of codimension at least p+ 1.

Proof. For l < p, the currents (ddc log |f |)l and log |f |(ddc log |f |)l are well
defined on Ω and have smooth coefficients on Ω \ Af ; since dim Af < n− l,
they cannot charge Af . By Siu’s formula (Theorem 4.7.3),

(ddc log |f |)p =
∑
j

λj[Aj] +R

with λj > 0 generic Lelong numbers of (ddc log |f |)p along Aj. We will see
soon that they are precisely the multiplicities mj. �

Examples 4.8.2 Particular cases:
1) p = q = 1: no condition on A is required, R = 0, so we have the

Lelong-Poincarè equation
ddc log |f | = Zf .

2) p = q ≤ n: R = 0 because in this case the restriction of log |f | to
p−dimensional complex planes L are maximal psh function on L \ Af and
so, (ddc log |f |)p = 0 outside Af . This gives King’s formula [GK73]

(ddc log |f |)q =
∑
j

mj[Aj] = Zf .
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4.9 Lelong numbers and multiplicities

We have seen that the Lelong number of ddc log |f | for a holomorphic function
f : Ω→ C at x ∈ Ω equals the multiplicity of the zero of f at x, and in that
case it is just the vanishing order of f at x (the least degree of its monomials
about x). For holomorphic mappings to Cq, q > 1, the multiplicities are
defined in a different way.

In the simplest situation q = p = n (p being the codimension of the zero
set at x), f is a finite covering of a neighborhood U0 of 0 by a neighborhood
Vx of x, and the multiplicity of f at x is just the number of the sheets the
multiplicity of an equidimensional mapping f . In other words, it is the
generic number of solutions y ∈ Ux to the equation f(y) = a, a ∈ Bε.

When q > n and still the codimension p equals n, the multiplicity of f is
the one for the mapping f ′ : Ω → Cn whose components are generic linear
combinations of the components of f .

When p < n, one considers restrictions of the mapping f to generic
q−dimensional complex planes passing through x.

Theorem 4.9.1 If the codimension of the zero set Af of f at x equals p,
then ν((ddc log |f |)p, x) equals the multiplicity of f at x.

Proof. This is easy to check if f : Cn
0 → Cn

0 and p = n, i.e., x is an isolated
point of f−1(0). Let s be the number of the sheets of the covering. Then

ν((ddc log |f |)n, x) = ν([Vx], log |f |) = ν(f∗[Vx], 0) = s ν([U0], 0) = s.

A reduction of the general situation to this case is a bit technical; we omit
the details. �

Note also that Af is the intersection of the zero sets Afk of the compo-
nents fk of f . A corresponding formula for the case p = q ≤ n represents
the holomorphic chain Zf as the intersection product of the divisors of the
components fk of the mapping f . Denote uk = log |fk|.

Theorem 4.9.2 If the zero sets Afk satisfy condition

dimAj1 ∩ . . . ∩ Ajm ≤ n−m

then for all m-tuples (j1, . . . , jm) and all m ≤ q, then

ddcu1 ∧ . . . ∧ ddcuq = Zf .
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Proof. By the Lelong-Poincarè equation, ddcuk = Zfk , so

ddcu1 ∧ . . . ∧ ddcuq = Zf1 ∧ . . . ∧ Zfq .

Being supported by Af , it has the form
∑

j αj[Aj], where {Aj} are the ir-
reducible components of Af and αj > 0 are the intersection multiplicities
of Zf1 , . . . , Zfq along Aj (proof by induction). As is known in intersection
theory, these are precisely the multiplicities of the mapping f . �

5 Evaluation of residual Monge-Ampère

masses

Computing Lelong numbers of psh functions is a relatively easy task, while
computation of the Lelong numbers for the Monge-Ampère currents (ddcu)m,
m > 1, is much more complicated. Even for u = log |f | for holomorphic
mappings f (i.e, for computing multiplicities of the mappings), no general
explicit formulas are available, and we have to restrict ourselves to certain
bounds that might become equalities in ’generic’ situations.

No upper bound of ν((ddcu)m, x) in terms of ν(u, x) is possible. Nev-
ertheless, it seems to be unknown if there exists a psh function with zero
Lelong number and nonzero residual Monge-Ampère mass.

As to estimates from below, a standard bound (following from Demailly’s
comparison theorem) is

ν((ddcu)m, x) ≥ [ν(u, x)]m,

which is far from being an equality unless u(z) is essentially c log |z−x|. More
precise relations can be obtained by means of more refined characteristics of
local behaviour of a function, e.g., directional Lelong numbers. This way we
get, in particular, relations for the multiplicities of the mappings in terms of
their Newton polyhedra.

This part is based on [LeR99] and [R00]. For a nice presentation of the real
Monge-Ampère operator, see [RaT77]. Kushnirenko-Bernstein’s theorems
are presented in [AYu79], [Ku76].

5.1 Reduction to local indicators

We will set here x = 0 and consider the classical Lelong numbers of the
Monge-Ampère currents (ddcu)m and the mixed Monge-Ampère currents
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ddcu1 ∧ . . . ∧ ddcuq at 0. A basic tool will be again Demailly’s comparison
theorem, which implies the following: assuming the Monge-Ampère currents
ddcu1 ∧ . . . ∧ ddcuq and ddcv1 ∧ . . . ∧ ddcvq well defined, 2 ≤ q ≤ n, let

lim sup
z→0

uk(z)

vk(z)
= lk <∞, 1 ≤ k ≤ q;

then

ν(ddcu1 ∧ . . . ∧ ddcuq, 0) ≤ l1 . . . lq ν(ddcv1 ∧ . . . ∧ ddcvq, 0). (5.1.1)

Since uk(z) ≤ ν(uk, 0) log |z|+O(1), this gives us

ν(ddcu1 ∧ . . . ∧ ddcuq, 0) ≤ ν(u1, 0) . . . ν(uq, 0). (5.1.2)

For a more precise bound, choose vk = Ψuk , the indicators of uk at 0.
Recall that the indicator Ψu of u ∈ PSH0 is a toric psh function in the unit
polydisk, defined as

Ψu(z) := ψu(log |z1|, . . . , log |zn|),

where ψu(s) = −ν(u, 0,−s), s ∈ Rn
−, and ν(u, 0, a) are directional Lelong

numbers.
Since u ≤ Ψu + C near the origin, (5.1.1) implies

Theorem 5.1.1 If ddcu1 ∧ . . . ∧ ddcuq is well defined near the origin, then

ν(ddcu1 ∧ . . . ∧ ddcuq, 0) ≥ ν(ddcΨu1 ∧ . . . ∧ ddcΨuq , 0).

For u ∈ L∞loc(Ω \ {0}), the operator (ddcu)n is well defined, and the value

Ru := ν((ddcu)n, 0)

is the residual measure of (ddcu)n at 0. In this situation, Ψu is a maximal
psh function on Dn \{0} and so, by Theorem 2.3.1, (ddcΨu)

n = 0 on D \{0}.
Therefore,

(ddcΨu)
n = Nu δ0

with
Nu = RΨu ,

the Newton number of u at 0 (the reason for using the name will be clarified
soon).

45



Corollary 5.1.2 If u ∈ PSH(Ω) ∩ L∞loc(Ω \ {0}), then Ru ≥ Nu.
More generally, let {u} be an n−tuple of psh functions u1, . . . , un in Ω.

If the Monge-Ampère current ddcu1 ∧ . . .∧ ddcun is well defined near 0, then
its residual Monge-Ampère mass

R{u} := (ddcu1 ∧ . . . ∧ ddcun)(0)

has the bound
R{u} ≥ N{u},

where
N{u} = R{Ψu} = (ddcΨu1 ∧ . . . ∧ ddcΨun)(0).

To make all this reasonable, one has to look for good bounds for the
Newton numbers.

5.2 Geometric interpretation: volumes

More sharp bounds can be obtained by precise calculation of the Monge-
Ampère masses of the indicators. This can be done by switching to the real
Monge-Ampère operator.

Definition 5.2.1 Let U be a toric psh function in the unit polydisk Dn, i.e.,
U(z) = U(|z1|, . . . , |zn|) ∈ PSH(Dn). Then the function

h(t) := U(exp(t1), . . . , exp(tn)), t ∈ Rn
−,

is convex in t and increasing in each tk. We call it the convex image of U .

Assume, in addition, u ∈ L∞(Dn). By elementary computations,

(ddcU)n = n!(2π)−nMAR[h] dθ, zk = exp{tj + iθj},

where MAR is the real Monge-Ampère operator4. For h smooth,

MAR[h] = det

(
∂2h

∂tj∂tk

)
dt,

and it extends, as a measure-valued operator, to all convex functions h.
Furthermore,

MAR[h](F ) = Vol(Gh(F )) (5.2.3)

4For a thorough treatment of the real Monge-Ampère operator, see [RaT77].
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for Borel sets F ⊂⊂ Rn
−, where

Gh(F ) =
⋃
t0∈F

{a ∈ Rn : h(t) ≥ h(t0) + 〈a, t− t0〉 ∀t ∈ Rn
−}

is the gradient image of F for the surface ξ = h(t).
The terminology and the proof come from the smooth situation where

MAR[h] equals the Jacobian determinant J∇h for the gradient mapping ∇h,
Gh(F ) = ∇h(F ), and the equation (5.2.3) is just the coordinate change
formula.

So, for any Borel, n-circled (toric, Reinhardt) set E ⊂⊂ Dn and its loga-
rithmic image

logE = {t ∈ Rn
− : (exp t1, . . . , exp tn) ∈ E},

we have
(ddcU)n(E) = n! VolGh(logE).

Definition 5.2.2 Ψ ∈ PSH−(Dn) is an (abstract) indicator if Ψ is a toric
function whose convex image ψ(t) := Ψ(exp(t1), . . . , exp(tn)) is positive ho-
mogeneous: ψ(ct) = cψ(t) for all c > 0.

In other words, ψ is the restriction to Rn
− of the support function of a

convex subset of Rn
+:

ψ(t) = sup {〈a, t〉 : a ∈ ΓΨ}, t ∈ Rn
−,

where
ΓΨ = {a ∈ Rn

+ : 〈a, t〉 ≤ ψ(t) ∀t ∈ Rn
−}. (5.2.4)

Denote U = max{Ψ,−1} with Ψ an indicator. Then the current (ddcU)n

is supported by the set EΨ = {z : Ψ(z) = −1}, and

Gh(logEΨ) = Rn
+ \ ΓΨ.

Furthermore, if Ψ ∈ L∞loc(Dn \ {0}), then

(ddcU)n(Dn) = (ddcΨ)n(Dn) = RΨ.

For any convex and complete subset Γ of Rn
+ (i.e., Γ + Rn

+ ⊂ Γ), we put

Covol(Γ) = Vol(Rn
+ \ Γ),

the covolume of Γ. So we get
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Proposition 5.2.3 The MA-mass of an indicator Ψ ∈ L∞loc(Dn \ {0}) is

RΨ = n! Covol(ΓΨ),

where ΓΨ is defined in (5.2.4).

When Ψ = Ψu, the set

ΓΨ = Γu := {a ∈ Rn
+ : ν(u, 0, a) ≤ 〈a, b〉 ∀b ∈ Rn

+}. (5.2.5)

Thus Corollary 5.1.2 gives us

Theorem 5.2.4 If u has isolated singularity at 0, then

Ru ≥ Nu = n! Covol(Γu). (5.2.6)

To compute the mass of the corresponding mixed Monge-Ampère opera-
tors of indicators, we consider a (unique) form Covol (Γ1, . . . ,Γn) on n-tuples
of complete convex subsets Γ1, . . . ,Γn of Rn

+ which is multilinear with re-
spect to Minkowsky’s addition and such that for every convex complete Γ
with finite covolume we have Covol (Γ, . . . ,Γ) = Covol Γ. The form can be
shown to be well defined on all n-tuples Γ1, . . . ,Γn such that ∪jΓj has finite
covolume.

Theorem 5.2.5 Let {u} = u1, . . . , un. If ddcu1 ∧ . . . ∧ un is well defined,
then

R{u} ≥ n! Covol(Γu1 , . . . ,Γun).

Note that if u = log |z|, then Γu = ∆c := {a ∈ Rn
+ :

∑
k ak ≥ 1},

the complement to the standard simplex. Therefore, for {u} = u1, . . . , uq,
1 ≤ q < n, with the Monge-Ampère current ddcu1 ∧ . . . ∧ ddcuq well defined,
we have the bound

R{u} ≥ n! Covol(Γu1 , . . . ,Γuq ,∆
c, . . . ,∆c).
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5.3 Applications to holomorphic mappings: Newton
polyhedra

For a function u = log |f | generated by a holomorphic mapping f : Cn
0 → Cq

0

(q ≥ n) with isolated zero, the residual Monge-Ampère mass Ru of (ddcu)n

at 0 is the multiplicity mf of f at the origin.
When q = n and the zero sets of the components of f are properly

intersected, inequality (5.1.2) gives us the bound

mf ≥ mf1 . . .mfn

via the multiplicities of the components of the mapping f , which is a local
variant of Bezout’s theorem.

As we saw in (1.6.12), the indicator of u = log |f | for a holomorphic
mapping f computes as

Ψu(z) = sup
{

log |zJ | : J ∈ ω0

}
,

where ω0 ⊂ Zn+ is the collection of multi-indices J such that zJ has nonzero
coefficient in the Taylor expansion of at least one component of f . Therefore,
its convex image ψu has the representation

ψu(t) = sup{〈t, J〉 : J ∈ ω0}.

This means that the set Γu (5.2.5) is the convex hull Γf of the set ω0, and
Γf is known as the Newton polyhedron for the mapping f at 0. Therefore, a
particular case of Theorem 5.2.4 recovers the bound

mf ≥ n! Covol(Γf )

obtained for q = n by Kushhnirenko (1975) by means of analytic and alge-
braic techniques. The corresponding specification of Theorem 5.2.5 gives a
Kushnirenko-Bernstein’s type result.

Note that for holomorphic mappings f to Cq, q < n, with the zero set of
codimension q, Theorem 5.2.5 gives the bound

mf ≥ n! Covol(Γu1 , . . . ,Γuq ,∆
c, . . . ,∆c),

where uj = log |fj|, the sets Γuj are the Newton polyhedra of the functions
fj at 0, and ∆c = {a ∈ Rn

+ :
∑

k ak ≥ 1}.
So, methods of pluripotential theory are quite powerful to produce, in

a simple and unified way, efficient bounds for multiplicities of holomorphic
mappings.

49



6 Open questions

Here we list just a few problems on psh singularities.

If u ∈ PSHx has isolated singularity, then (ddcu)n(x) ≥ [ν(u, x)]n, while
no reverse bound is possible. Indeed, take u = max{k log |z1|, log |z2|}, k > 0,
then ν(u, 0) = 1 while (ddcu)n(0) = k.

Question 1 (Zero Lelong Number Problem; V. Guedj, A. Rashkovskii, 1999):
Is the implication

(P1) ν(u, x) = 0 ⇒ (ddcu)n(x) = 0

true whenever (ddcu)n is well defined (for example, if u is locally bounded
outside x)? (This is Question 7 from [DiGuZe16].)

This is true (by Demailly’s comparison theorem) if u has the lower bound

u(x) ≥ c log |z − x|+O(1) (6.0.1)

for some c > 0. By the  Lojasiewicz inequality, any holomorphic mapping f
with isolated zero at x satisfies

|f(z)| ≥ |z − x|γ

for some γ > 0, so psh functions with analytic singularities satisfy (6.0.1).
It can be shown that if u is locally bounded outside x, there exists a

function v which is locally bounded and maximal outside x and such that
ν(v, x) = ν(u, x), (ddcv)n(x) = (ddcu)n(x).

Question 2: Does there exist v ∈ PSH(Ω)∩L∞loc(Ω\{x}), maximal in Ω\{x}
and such that

lim sup
z→x

u(z)

log |z − x|
=∞?

Question 1 may be approached by approximating u by functions um with
analytic singularities (Demailly’s approximation, Theorem 4.3.2) for which
(P1) is true. It is known that ν(um, x) → ν(u, x), however it is not clear if
their residual Monge-Ampère at x converge to that of u.

Question 3 (Demailly): Is it true that (ddcum)n(x)→ (ddcu)n(x)?

More information on these questions can be found in [R16]. Other open
problems on psh singularities and related topics (including quasi-psh func-
tions) are presented in [DiGuZe16].
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